
Physics 139 Relativity

Relativity Notes 2002

G. F. SMOOT
O�ce 398 Le Conte

Department of Physics,
University of California, Berkeley, USA 94720

Notes to be found at
http://aether.lbl.gov/www/classes/p139/homework/homework.html

1 POINT OF VIEW

In this chapter we consider relativistic e�ects from di�erent points of view. In
essentially all the cases we have done before, we have assumed that we had a complete
reference frame of meter sticks and clocks so that we could determine lengths and
times at any place in space-time. This I refer to as the physicist's god-like view
provided by his reference frame and ancillary tools. This concept of reference frames
comes to us from Galileo and Newton.

Most mere mortals, such as astronomers and individuals, have more limited
access to data about remote objects. In general, especially for astronomy, the observer
either sits at a point in space-time and images light coming to his instrument { eye,
telescope, camera, etc. { or sits at a point in space and observes the light arriving as
a function of time.

The result of being limited to a single point of view, instead of the physicist's
god-like plan view is to observe very di�erent relativistic behavior than we have
considered so far. One can observe cases of a moving clock running faster. Radio
astronomers observe many objects moving superluminally (that is with velocities
faster than light), and fast moving objects appear very di�erently than a resting
object at the same place. Sometimes one can not see the front of an approaching
object but can see the back.

We consider some of these e�ects in the following sections.

2 The Relativistic Doppler E�ect

From the point of view of a single observer con�ne to a location in space, a moving
clock can run either faster or slower than an identical clock at rest with respect to the
observer depending upon its velocity (direction and speed of motion). We consider
the case of a clock that is a light source with a particular frequency and work out the
relativistic Doppler shift. The frequency can be considered the beats of the clock.

We work the problem out by considering two di�erent inertial frames and use
the Lorentz transformations in order to determine what a single-place observer would
see.
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2.1 Ray Optics Approach

First, go to the frame S0 where the source is at rest and emits light at frequency
� 0 = �o. Now consider a pulse light going in the direction �0 relative to the x0-axis.
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Now consider the frame S, where the source is moving in the x direction with
velocity (speed) v, and consider the path of the light in this frame. We can use the
Lorentz transformations to calculate the location of a light pulse emitted at time
t0 = 0 and trace its path as a light ray.

x =
x0 + vt0q
1� v2=c2

=
ct0cos�0 + vt0q

1� v2=c2
=

ct0 (cos�0 + v=c)q
1� v2=c2

y = y0 = ct0sin�0

By taking the ratio of y over x when can �nd tan�

tan� =
y

x
=

sin�0

cos�0 + v=c

q
1� v2=c2 =

1




sin�0

cos�0 + v=c
(1)

This is the full relativistic aberration of light formula derived by ray optics argument.
This is the same result as found using the Lorentz contraction and ether approach.

Now using the Lorentz transform for t and then t0 we can derive a formula for
the relative rate at which clocks appear to run.
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Similarly and symmetrically
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Taking the derivative of t with respect to t0 and vice versa and inverting we �nd the
relations
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Note that it matters whether one uses the angle � or �0 because of the aberration of
angles. The frequency of clock ticks would be:
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�



�
1�

v

c
cos�

��
�1

(3)

2.2 Phase of Plane Wave Approach

Now we can calculate the direction and wavelength or frequency of light observed by
considering the phase of a plane wave traveling in the same direction �0 in the frame
S0 where the light source is at rest. Remember the relationship between wavelength
�, frequency �, and the speed of light c: �o�o = c

� = 2�
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�ot

0 �
x0cos�0 + y0sin�0

�o

#

apply the Lorentz transforms expressing x0, t0 in terms of x and t and y0 = y to obtain:
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Now in the laboratory or observer rest frame coordinates
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Since we realize that the phase must be the same in the two frames, we can compare
the previous equations and obtain the coe�cients for t, x, and y which must be the
same. I.e. for t

� = 
�o +
cos�0

�o

v = 
�0

�
1 +

v

c
cos�0

�

Collecting the coe�cients for t0 yields
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These are the relativistic Doppler e�ect for frequency
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These are the same equations we got for the ratio of clock running rates using the
geometrical ray tracing.

We can also �nd aberration of angles, started by setting the coe�cients for x
and y equal from the two equations for the phase.

cos�
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sin�

�
=

sin�0

�o

where we make use of the relationship �0�0 = �o�o = c = ��. The ratio of these
equations gives

tan� =
sin�0


 (cos�0 + v=c)

is the same aberration from ray optics above. This is natural since one is geometrical
(ray) optics and the other wave but rays propagate normal to wave fronts.

2.3 Special Cases

2.3.1 Doppler shift parallel to direction of observation

Consider the special case when the source is approaching or receding directly. That
is to say that the velocity of the source is parallel to the line of sight. Then both
versions of the formula yield the following relationship

� = �0
s
1 + �

1� �

This is left as an exercise to the reader to show this and to show that the equation is
exactly symmetrical on reversal of the frames

�0 = �

s
1 + �0

1 � �0
= �

s
1� �

1 + �

2.3.2 Doppler shift perpendicular to direction of observation

The case of motion perpendicular to the direction of observation (in the observation
frame). is quite simple:

� = �0=
 �0 = 
�

This is called the transverse Doppler shift and is simply a result of time dilation as
one would anticipate.

2.3.3 Fresnel's Velocity Dragging Coe�cient

u = u0 + vcos�(1� u02=c2) = c=n+ �vcos�

3 Superluminal

Radio astronomers routinely observe objects that they classify as superluminal.
Operationally this means that a radio astronomers uses his radio telescope (often
an interferometer array) to make an image of an object at multiple times and the
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time rate of change of the angular diameter of the astronomical object times the
estimated distance to the object gives a result that implies a velocity transverse to
the line of sight which is greater than the speed of light, sometimes by up to �ve
times.

There are a number of potential explanations for these observations but nearly
all can be ruled out easily by companion observations.

Consider the following scenario where the source is at rest with respect to the
observer (radio astronomer) and has sent out an relativistic expanding shell of light
emitting matter.
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A radio astronomy telescope images the incoming wavefront which means that
it accepts photons which have arrived at the telescope at the same time. Hence we
need to �nd the locus of points on the expanding wave front which have the same
total travel time to the radio telescope. This means that the sum, ttotal, of the time
t1 = R=v taken for the point on the expanding sphere to reach the point at radius
R = vt1 where it emits the light plus the time t2 = (D � Rcos�)=c it takes light to
travel from the point of emission to the radio telescope. Note that D is the distance
from the original expanding source to the radio telescope.

ttotal = R

 
1

v
�

cos�

c

!

R =
vt

1� �cos�

note that for � � 1, this radius is R ' vt(1 + �cos�).
Note also that this is an alternate de�nition of an ellipse with eccentricity

e = �. Usually an ellipse is geometrically de�ned a the locus of points for which
the sum of the distance from two points is a constant. However, a more general
de�nition of a conic section is the locus of points whose distance between a point and
a line, called the directrix (in this case the wavefront), is in a constant ratio e. In
this case e = v=c. If e is less than 1, the resulting �gure is an ellipse. If e is equal
1, the resulting �gure is an parabola. If e is greater than 1, the resulting �gure is a
hyperbola. The eccentricity e of an ellipse varies between 0 and 1 and the value of e
indicates the degree of departure from circularity. (Focus is at a distance of ae from
the center and the directrix is at a distance a=e from the center of the ellipse.)
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The apparent diameter set by the symmetric pair of such points is twiceRsin�.

Diameter = 2Rsin� = 2vt
sin�

1� �cos�

The velocity perpendicular to the line of sight is

v? =
vsin�

1� �cos�

We can �nd the maximum apparent diameter (still assuming the expanding shell is
opaque and emitting light) by taking the derivative of the diameter with respect to �
setting that to zero and �nding the maximum apparent diameter at time to.

dDiameter

d�
= 2vt

 
cos�

1� �cos�
�

�sin2�

(1 � �cos�)2

!

=
2vt

(1� �cos�)2
(cos� � �)

The maximum clearly occurs at

cos� = �; sin� =
q
1� �2; � = cos�1�

At the maximum

R =
2vt

1 � �cos�
=

2vt

1 � �2
= 
2vt

The diameter is then

Diameter = 2vt
sin�

1� �cos�
= 2vt

p
1 � �2

1� �2
=

2vt
p
1� �2

= 2
vt

v? = 2
v

The subtended angle is ' 2
vt=D and the apparent velocity is 
 times the expanding
sphere velocity.

The most visible radio objects are double-lobe radio sources which have back-
to-back relativistic jets. In practice one generally only able to measure well relativistic
jet that is coming towards the observer because the Doppler e�ect both changes the
observed temperature and intensity. The intensity of the portion coming towards
the observer is typically increased by the factor 8
 and the portion moving away
decreased by the same factor. See the following exercise:
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3.1 Superluminal Motion Exercise

Astronomers observe a large number of radio sources that move with apparent
superluminal speed. That is the rate of change of angular separation between
components times the distance to the radio source gives a velocity well in excess of the
speed of light (vobserved = D � d�=dt). Consider the following problem and diagram
to help understand how an astronomer could measure apparent superluminal speed,
if there is a relativistic beam coming from the source.

blob on jet
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��

��
��

��
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Neglect the source (host galaxy) motion relative to the observer and consider
the motion of only a single blob on a radio jet. The blob moves at velocity v with
respect to the galactic nucleus (and observer) beginning at time t = 0. Also assume
that the blob and nucleus continuously emit radio waves so that they can be observed.

Consider the radio emission received as a function of time by the observing
radio astronomer very far (distance D) away. Show that the observer sees the blob
coincident with the galaxy source at time t0 = D=c corresponding to t = 0. Show
also that the observer sees the blob with transverse displacement vt sin� from the
galactic nucleus at the time

tr = t+ (D � vt cos�)=c

Show that the elapsed time for the observer was

tr � t0 = t(1� �cos�)

where � = v=c.
The apparent transverse velocity of the blob relative to the nucleus

vapparent�transverse equals the transverse displacement divided by the time di�erence
observed for the displacement to occur. Show that this leads to the formula:

�apparent�transverse =
�sin�

1 � �cos�

Plot this formula for the following values: � = 0:5; 1 (a special case) and 
 =
2, 3, 4, 5, 7, 16.
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Show that the maximum transverse velocity happens for cos� = � (and thus
sin� =

p
1� �2 = 1=
), as derived in class for an expanding spherical shell, and that

the maximum apparent transverse velocity is

�apparent�transverse�max = �=
q
1� �2 = 
�

and that your graphs agree with this.
Note that for the critical angle and 
 >> 1, the transverse speed is roughly

vapparent�transverse�max � 
c.

3.2 Too Rapid Time Variability

The minimum size for an astronomical object is often estimated by use of our earlier
�nding that no causal impulse can travel with a speed faster than the speed of light.
Thus if an object is observed to vary its brightness very signi�cantly in a given time
period �t, then it must be no larger than d = �t in extent. This is a good rule for non-
relativistic objects. However, if the object, e.g. a jet, is moving towards the observer
with relativistic speeds, then this can be compressed by a factor 
(1+�cos�0)). which
can be as much as 2
object.

This e�ect has been observed (R. A. Remillard, B. Grossan, H. V. Brandt,
T. Ohashi, K. Hayashida, F. Makio, & Y Tanaka, Nature 1991 vol 350 p 589-592)
in the rapid variability of an energetic X-ray 
are in the quasar PKS0558-504. The
quasar X-ray 
ux was observed to increase by 67% in three minutes while there was
no signi�cant change in the spectrum. Since we know the mass of the black hole from
the limit of accretion e�ciency, we know it's size. From the minimum (light) travel
time across the source, we know the minimum variability time scale. The observed
time is shorter, by about a factor of 16; therefore, we must have relativistic beaming.

Another interesting example of variability, however, is the time dilation of
supernova light curves. Nearby Type 1A supernova are observed to have a very
standard brightness and time dependence of the light curve. (This can be made even
a tighter standard by the correlation between the intensity and light curve width in
time.) When observed at great distances, the light from a Type 1A supernova is
observed to be reddened by an amount that is consistent with a Doppler frequency
shift and the light curve time taken is stretched by the same amount predicted by the
relativistic Doppler shift formula. Most observed distant supernova have frequency
shift factors ranging from 1.2 to 1.9. As we will see later this is evidence that the
Universe is actually expanding and one can understand this stretching from a General
Relativistic point of view also.

4 Appearance of Rapidly Moving Objects

Surprisingly, if an observer looks at or photographs a small fast-moving object (� � 1),
which approaches him at even a relatively small angle, he cannot see the front of
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the object but can see the bottom and back. Likewise, it is impossible to see the
Lorentz-Fitzgerald contraction by this technique. Instead of looking shortened along
the direction of motion, an object will appear rotated. This is a combined e�ect of
the aberration of light and the fact that our instruments (eye and camera) use the
incoming wavefront from the object.

In 1959 James Terrell (J. Terrel 1959 Phy. Rev. 116, 1041) realized that
the visual appearance of an object would moving at high speeds would not reveal the
Lorentz contraction in the direction of motion as commonly expected. That same year
Roger Penrose (R. Penrose 1959 Proc. Cambridge Philosophical Soc. 55, 137) proved
that a sphere would always appear to be a sphere rather than a Lorentz-contracted
ellipsoid. These and some other results were brought to physicists' general attention
by a Physics Today article of Victor F. Weisskopf (1960).

The key point is that when we see of photograph an object, we record light
quanta (wavefronts) emitted by the object, when they arrive simultaneously at the
retina or at the photographic �lm. This implies that these light quanta (portions
of the wavefront) were not emitted simultaneously by all points of the object. The
points further away have emitted their part of the picture earlier than the closer
points of the object. Hence, if the object is in motion, the eye or the camera gets
a \distorted" picture of the object, since the object has been at di�erent locations,
when the di�erent parts of it have emitted the light seen in the picture.

In special relativity, this distortion has the remarkable e�ect of canceling the
Lorentz contraction so that small solid-angle objects appear undistorted and only
rotated.

4.1 Appearance of a Moving Stick

We do a very simple case �rst. Consider a moving stick of length `o = `0 in its rest
frame S0 which is aligned with the x0 axis. In frame S where you the observer is
idealized as a point at the origin which can take photographs. In frame S the stick

has length ` = `o=
 = `o
q
1� v2=c2 and is moving with velocity +v along the x axis.

Consider the junior physics lab experiment where the student is asked to
determine the apparent length of the stick from a point the center of the laboratory
frame. Student A - Jim Photographer - sets up a camera and a self-illuminated stick
and his partner, Student B - Lena Timer sets up a radar or laser ranger and a meter
stick with retro-re
ectors on each end.

4.1.1 Sell-Illuminated Stick

First consider the stick as a cartoon meter stick - a frame which de�nes the edges of
the meter stick and the frame is glowing. The rest of the meter stick is transparent
(not there). A view or photograph from the center of the frame S shows one rectangle
(outline of far end) inside another (outline of the near end) and the corners of the two
rectangles connected by lines (edges of the length of the cartoon stick). If the stick
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were not moving, the relative size of the rectangles is set by the ratio D=(`+D) of their
respective ends distances from the origin. But the stick is moving, thus contracted,
but also the light from the more distant end must start toward the camera sooner
than the light from the near end in order to arrive at the camera at the same time.
This second e�ect is present classically and causes distortions in pictures of rapidly
moving objects.

Consider �rst the stick moving toward (approaching) the origin. The light
from the far end of the stick must catch up with the front end of the stick to continue
on with the light just then emitted from the front end of the stick. In the approaching
direction the light must travel the length of the stick plus the distance the stick has
moved from the time the light leaves the far end of the stick until the time it reaches
the front of the stick.

distance light travels = stick length + distance moved

c�t1 = ` + v�t1

�t1 =
`

c� v

`a = ` + v�t1 = `

�
1 +

v

c� v

�
= `

1

1 � �
= `o

s
1 + �

1 � �

Thus the stick appears longer even though it is length contracted.
When the stick is receding, the light leaving the far end (now the front of the

stick) must reach the near end (now the back of the stick) at the time the light leaves
the near end of the stick. So the light must, once again be emitted �rst from the far
end of the stick, but it has to travel less distance to the front because the stick is
moving towards the light.

distance light travels = stick length � distance moved

c�t1 = `� v�t1

�t1 =
`

c+ v

`a = ` � v�t1 = `

�
1�

v

c+ v

�
= `

1

1 + �
= `o

s
1 � �

1 + �

Thus the apparent length is now shorter as the stick recedes into the distance. Student
A takes a lot of photographs and measures distances and ratios �nally he plots up
the apparent length as a function of position and �nds:
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4.1.2 RADAR or LIDAR-Illuminated Stick

Student B knows measuring times is easy and already has her results plotted. In her
apparatus the radar or laser pulse �rst hits the near end of the stick and re
ects back
to her receiver where she records the time. The pulse then re
ects from the far end of
the moving stick and returns to her receiver and she records the time. The di�erence
in times divided by 2c gives her the apparent observer-illuminated stick length.

We can calculate the extra time to get to the far edge (back edge of approaching
stick) and �nd the the light pulse has to travel less than the laboratory length of
the stick because the stick has moved forward to meet it. It is just the symmetric
opposite case of the receding self-illuminated stick. The radar apparent length of an
approaching stick is

`a = `o

s
1 � �

1 + �

For the receding stick the light going to the back edge to re
ect has to travel the
length of the stick plus the distance the stick has traveled and so the radar apparent
length of the receding stick is

`a = `o

s
1 + �

1 � �

which is longer than the apparent length of the approaching stick.
Who is right? They both are. This is an illustration about the care one needs

to take in de�ning the question.
Because Student B's technique was so much faster, she had plenty of time after

taking the data to puzzle over the results and realizes that a lot of the e�ect is to be
expected simply because of the �nite speed of light - a necessary component of her
measurement. The �nite speed of light makes the approaching stick re
ections closer
by the factor 1�� and the receding stick's re
ections further apart by the factor 1+�.
She corrects for this e�ect and �nds the length of the stick is always ` = `o

p
1 � �2.

She claims she has \observed" the length of the stick and it is contracted by just
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the Lorentz factor
p
1 � �2. The lab instructor is impressed and knows the \right"

answer from the Michelson-Morely experiment and the Lorentz contraction.
Student A is mi�ed but also shows he is really sharp also, even if he has done

the observations the hard way. He argues: \Yes, there is a classical e�ect, that does
cause the stick to appear distorted." However if we were asking, if we can observe
the Lorentz contraction by eye or camera, then a more careful analysis shows that
we cannot \see" it directly but have to correct our calculations to do so. The image
is actually distorted in such a way that the Lorentz contraction is hidden. Consider
the following argument about the true appearance of a rapidly moving object.

4.1.3 Sell-Illuminated Small Cube

Consider a small cube moving towards the observer or camera with very large velocity.
Arrange for it to pass over head by a small but reasonable amount. This is both for
reality and to avoid the problem the zero in the coordinate system. We will see that
aberration of light will cause the cube to appear rotated and the �nite travel time
of light and the rotation together just compensate for the Lorentz contraction. Thus
the object appears completely normal but rotated.

If an observer looks or photographs a fast-moving object (� � 1) which
approaches him at a small angle � of observation then, if �>

�

p
1 � �2, the observer no

longer sees the front side of that object, but can see the backside. We can appreciate
this qualitatively and then quantitatively. First consider the aberration of light.

In the rest frame of the object radiation can be considered emitted isotropically.
In the observer's rest frame, the radiation appears folded forward. All the radiation
emitted from the forward direction (�0 = 0) to right angles from the direction of
motion (�0 = 90�) is contained in a cone with tan� = c=
v or roughly for � � 1 inside
a cone with half angle � = 1=
 =

p
1� �2. Thus as the object reaches an angle higher

than ��
p
1 � �2 any radiation from the front of the object goes over the observer's

head or camera.
In fact due to the relativistic aberration only a very small part of the light

emitted backward in the rest frame of the object will go backward in the laboratory
frame. What will be observe? When an object such as a cube (radiating white light
in its rest frame) approaches from very far away (�<

p
1 � �2), then the observer

sees its front side and shortened by perspective its bottom side both radiating in the
the ultraviolet. The as the cube gets closer and the observation angle (�) grows,
the cube seems to turn and if �>1=�
, then we see only the bottom still violet. As
the observation angle becomes greater, the one not only no longer sees the front but
also can see the backside and the color is less violet. When the object passes over
head (� = 90�), one observes practically only the back side of the cube, radiating in
the infrared. The picture remains nearly unchanged until the cube disappears in the
distance.

Now let us consider this a little more quantitatively. Consider the cube at the
moment it is at right angles to the observer. (The moment that the light it emits
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to the observer leaves at right angles from the cube in the observer's frame.) The
observer will take a picture of the cube with light arriving in a wave front where the
light arrives to the eye or camera simultaneously. If the cube is small compared to
the distance to the camera, then to �rst order all the light from the bottom surface
leaves for the camera at essentially the same instant but the light from the back face
of the cube must leave earlier, the higher the point on the back face of the cube. The
light leaving the top of the back face of the cube must leave a time �t = `o=c and at
a position of the cube that is d = �v�t = �`o earlier (further back).

S
S
S
S

`x = `o
p
1� �2

`y = `oc�t

v�t

?

To Observer

The image from below shows the cube with width `o transverse to the
direction of motion and bottom length in direction of motion the Lorentz contracted
`o
p
1 � �2 and back edge with same width and length `o�. This is exactly the

perspective view one would get, if the cube were rotated through and angle �.

`o

�`o

��7 `o
p
1� �2

One can do these same calculations from any selected observation angle and
�nds similar results. The image (eye or photographic) appears to be a cube rotated
by the aberration angle.

The key issue is that one is observing with light emitted from the object (cube
in our example). In relativity light propagates with constant speed c independent of
the observer's or source speed and the key point here is that the wave front always
remains perpendicular to the direction of propagation. The only thing that changes
is the direction of propagation (and thus wavefront angle) which is what we call
relativistic aberration. Thus an image in one frame remains an image in the other
and only the angle of observation changes.

This statement is true for the case of a small object which subtends a small
solid angle. As one goes to larger angles, the aberration changes and a larger solid
angle object would be rotated and distorted by the variation in aberration angle
across the object being viewed.
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