Physics 139 Relativity
Relativity Notes 2002

G. F. SMOOT
Office 398 Le Conte
Department of Physics,
University of California, Berkeley, USA 94720
Notes to be found at
http://aether.bl.gov/www/classes/p139/homework /homework.html

5 Four Vectors

A natural extension of the Minkowski geometrical interpretation of Special Relativity
is the concept of four dimensional vectors. One could also arrive at the concept by
looking at the transformation properties of vectors and noticing they do not transtform
as vectors unless another component is added. We define a four-dimensional vector
(or four-vector for short) as a collection of four components that transforms according
to the Lorentz transformation. The vector magnitude is invariant under the Lorentz
transform.

5.1 Coordinate Transformations in 3+1-D Space

One can consider coordinate transformations many ways: If x1, zq, 23,24 = 2, ¥, 2, 2ct,
then ordinary rotations (in 1 — 2 plane around x3)

x] = xyc0s8 + xosinb ( cost sm@)

xh = —x181nb + xc080 —sinf  cosf
But in 1 — x4 plane:

Ty = xycosa + xysina ( cosQ Sina)

T = —x18tna + rycosa —8INQ  CoSK

where the angle « is defined by

cosa = 1/4/1 —v?/c? = 1/V1 + tan?a = 4

v/e _ tlana
\/1 — v2/c? V1 F tanla

tana = iv/ec = 1f3.

sino =1

And thus one has the trignometic identity:

cos’a + sina = 72 (1 — ﬂz) =1
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vy =7 [wr 4 (iet)(iB)] = 7 [e1 — Bet]
vy =7 [v4 — ifai]
ict' =~ ict — ifxq]
i’ = 5[t — )
t'=[t — Bai/d
So the extension to 3+1-D includes Lorentz transformations, if angles are
imaginary.
Really, we are considering the set of all 4 x 4 orthogonal transformations
matrices in which one angle may be pure imaginary.
In general all angles may be complex, combining real rotations in 2-space with

imaginary rotations relative to t.
An alternate way of writing this is

2’ = zcoshe — ctsinho
ct' = —xsinh¢ + ctcoshg
where ¢ = cosh™!#.
v’ = zcos(ig) + ictsin(id)
ict' = —xsin(id) + ictcos(i¢)
and
a =16 = icosh™ ', tana =1 = 1wv/c

Still another notation is (with x4 = éct)
vy =7 (21 +1ifas)
rly =7 (x4 — 1f21)

The transformation matrix is then

v 0 0 By
0 1 0 0
0 01 0
—ify 0 0 ~

Still yet another notation is with z¢ = ¢t
2o =7 (xo — ifBz1)
vy =7 (v1+ifxo)

The transformation matrix is then

0 1 2 3
0/~ —=pv 0 0
Ly =By v 00
21 0 0 1 0
3\ 0 0 0 1



5.1.1 Generalized Lorentz Transformation

For spatial coordinates the Lorentz transform fits the linear form

subject to the condition that the proper length

(cdr)? = —(ds)? = Y () = 3 = (ct)? — | (2)

I

is an invariant. This condition requires that the coefficients A form an orthogonal
matrix:

SN = o

DMAY = b

STACAY = 4 3)
where the Kronecker delta is defined by 6,, = 0, = (5Z = 1 when g = v and 0
otherwise.

The invariance group can be enlarged to be the Poincare! group by the addition
of translations:

4
(:1;“)’ = Z Alx? 4 o (4)
v=1

The full group includes: translations, 3-D space rotations, and the Lorentz boosts.

5.2 The Inner Product of 3+1-D Vectors
The definition of the inner product (dot product) must be modified in 3+1 dimensions.
A B =A1Bi + Ay By + AsBs + AyBy
if x4 = ¢ct. But with our usual convention
A+ B = AogBy — A1 By — A3 By — A3 Bs
or with the opposite signature metric one has
A-B=—AgBy+ A1 By + Ay By + A3 Bs
A-B=A By + A;yBy + A3 By — AyBy

if 4 = ¢t which is often the convention for the opposite sign convention. It is an
exercise to show that the inner product is unchanged under a Lorentz transformation.
Can be done simply by substitution. This can be extended to the general class of
Lorentz transformations.



5.3 Four Velocity

So we have the position 4-vector & = (xg,x1, 22, x3) and the displacement 4-vector
dr = (dxg,dxy, drg,drs). What other 4-vectors are there? That is what other 4-
vectors are natural to construct? What we mean by a four-vector is a four-dimensional
quantity that transforms from one inertial frame to another by the Lorentz transform
which will then leave its length (norm) invariant.

Consider generalizing the 3-vector velocity (vy, vy, v.) = (da/dt,dy/dt,dz/dt)
what can we do to make this into a 4-vector naturally? One clear problem is that we
are dividing by a component dt of a vector so that the ratio is clearly going to Lorentz
transform in a complicated way. We need to take the derivative with respect to a
quantity that will be the same in all reference frames, e.g. d7 the differential of the
proper time, and add a fourth component to make the 4-vector. It is clear that the
derivative of the 4-vector position (ct,x,y, z) with respect to the proper time 7 will
be a 4-vector for Lorentz transformations since (¢t, x,y, z) transform properly and dr
is an invariant. So we can define the 4-velocity as

dn L (dtde dy d
dr’ = dr’dr’dr’dr

Uy
Note that

d2 d2 d2
Adr? = Adt* — da? — dy? — d2* = di? (02__:1; Y __y)

= dt* (02 —v? - vi — v?) = dt* (02 — v2)
or the time dilation formula we got before

dr dt B 1

=41 —v?/c? and —=-—F—m  —=1
dr /1 — 02/

o=
So we can now explicitly write out the 4-velocity using the chain derivative rule:

B dr, B dr, dt

UUey =

dr  dt dr

u = (uov Uy, U2, U3) = (707 VVz, YUy, ’VUZ) =7 (C, Uzy Uy, vz)
Thus three components of the 4-velocity are the three components of the 3-vector
velocity times ~.
Note also that the norm - the magnitude or vector invariant length - of the
four-velocity is not only unchanged but it is the same for all physical objects (matter
plus energy). For 3+1 dimensions the norm or magnitude is found from the inner

product or dot product which has the same signature as the metric (see just above)
so that

21—1)2/02 )

< _ 2 2 o9 o _afa2 92 2 2\ _
U-U=ug—uy —uy—u3 =7 (c —vi—v vz)—c 5 = ¢
1 —v?/c



Thus every physical thing, including light, moves with a 4-velocity magnitude of ¢
and the only thing that Lorentz transformations do is change the direction of motion.
A particle at rest is moving down its time axis at speed ¢. When it is boosted to a
fixed velocity, it still travels through space-time at speed ¢ but more slowly down the
time axis as it is also moving in the spatial directions.

One should also note that as the spatial speed (three-velocity) approaches ¢,
all components of the 4-velocity u,, are unbounded as v — oo. One cannot then define
a Lorentz transformation that moves to the rest frame. Thus all massless particles
will have no rest frame.

5.83.1 Law of Transformation of a 4-Vector

We can write the transformation in our standard algebraic Lorentz notation

Ay=7 (A= fAr) v =1/y1-p

v
Ay =7 (A1 = BA) ==

where 3 and 7 refer to the relative velocity V' of the frames.

5.3.2 Law of Transformation of a 4-Velocity

uy =7 (ur — Buo)
where # and ~ are for the relative velocity of the frames and not of the particle. But
in the formula for the 4-velocity

u = (u07u17u27u3) = (707 ’VUxa’Vvya’sz) =7 (C, vl’vvyvvz)

The ~ is for the particle! So we should have labeled it v, and the 3 and ~ for the
frame transform 3y and ;. Then we have

Yo = V5 (Ve — BYpc)

So we can get out a formula for v/,

JI— B
v/_’}/f’}/p(l’_v) (UQU—V)

oy T =B i- 5

This is our old friend on the law of transformation of /1 — u?/c?

— VL= ()22 1 —v2/e
L-ufe = L+ ulV/e?




and

Es \/1—u2/c \/1 V2/e?

L+ wu,V/e?
which is simply
I 1
Yo W (L—uV/e?)
So
, vy — V
v, = ———
Tl —wu,V/e?

as derived earlier by the differential route.
Continuing onward

=y or A=,
so that N
r_ p
Uy = 7—]/)1)1/
Y _ 1
v v (1 —uV/e?)
and

o 1 —=V2/e?

ool —wu,V/e? v
which is the same relationship as before from the differential Lorentz transform.
Similarly for v/ and vj:

Uy = 7 (o — PByus)
Explicitly this is

e =5 (e = pusV/e) = pse (1= w,V/e?)

So
7= (1 —wV/e)

which is our relation from the transformation of 4’s and its reciprocal used above.

5.4 Four Momentum

What is the natural extension of the 3-vector momentum to 4-momentum. The answer
is clear from dimensional /transform analysis and from our experimental approach on
how masses transformed. The 4-momentum is simply:

Pa = Moy, }5 — (p07p17p27p3) = M, (C7 v907v1/7v2’) (6)



The three spatial components are just the Newtonian 3-momentum with the mass of
the particle replaced by ym,.

We can see that the 4-momentum also has an invariant norm by making use
of our results for the 4-velocity:

pp=py—pi—ps—pi=EF —pP =mli-t=mlc

Thus the invariant length of the 4-momentum vector is just the rest mass of the
particle times c.

5.5 The Acceleration Four-Vector

In a similar way one may derive the acceleration four-vector. Again we differentiate
with respect to the proper time 7.

du
o — - 7
Go = — (7)

The four-vector acceleration will have a part parallel to the acceleration three-vector
and a part parallel to the velocity three-vector.
Exercise: Prove that the inner product of the 4-acceleration and the 4-velocity are
zero; & - 4 = 0 as they must be if the norm of the four-velocity is to remain constant
c.

We have also constructed the 4-acceleration to be a 4-vector so that a-a is an
invariant. Evaluate it in the rest frame a-a = |al?

a-a= |drest frame|2

in any frame. This can be very useful in various calculations and we will use it later
to treat radiation from and accelerating charged particle.

Acceleration 4-vector transforms by the relations:

ag =7y (a0 = Brar),  ay = az,

ay =5 (a1 = Prao),  ah = as,
This is the best starting place from which to derive the detailed Lorentz
transformation equations for acceleration.

5.6 The Four Vector Force

We now consider the four-vector force, which we define the following way:

podp _dpdt _ dp
=dr  dtdr  dt



F= (F07F17F27F3) =7 (W/Ca FNlaFN%FNS) — (FN : gv FNlaFN%FNB) (9)

where ﬁN is the three-dimensional Newtonian force, e.g. ﬁN = (Fn1, Fin2, Fys)

Note that the four force can be space-like, time-like and null. If a frame can
be found where the three-force on an object is zero but the object is exchanging
internal energy with the environment, then the four-force is time-like. The converse
is space-like. .

Then the 4-vector force I’ has the same transformation law as all 4-vectors:

Fy= s (Fo— B¢ Fy)

F =, (B — B¢ Fy)
So we can now conveniently transform any of the familiar vectors used in mechanics,
but not electric and magnetic fields, and pseudovectors obtained from cross-products,
such as angular momentum and angular velocity. We will treat these later.
The 4-vector force transforms are much easier than the 3-D fource transforms

which involve a 4. See the homework problem for the transformaiton of acceleration
to grasp how much more complicated it is.

5.7 4-D Potential

It is convenient to do physics in terms of potential and find the resulting force as the
derivative, e.g. the gradient, of the potential. Classical physics examples are:

Fa = —miCI)G Newtonian Gravitation
Iy = —¢Vog Electrostatics (10)

Once we have a 4-D potential, then we need to learn how to take derivatives in 4-D
spaces.

One approach is to make the simplest possible frame-independent (scalar)
estimate of the interaction of two particles. This manner of thinking eventually leads
one to the interaction Lagrangian as a the product of the two currents (electrical,
matter, strong, weak, gravitational).

L = Oéjl . 52 (11)

where « is the coupling constant and the next term is the inner (4-D dot) product of
the current of particle 1 and the current of particle 2. When the two currents are in
contact (zero proper distance separation), there is an interaction. When they are not
in proper distance contact, there is no interaction. This means that all interaction
is on the proper distance null (the light cone). Thus there is no action at a proper
distance. It is manifestly invariant as the inner product of two 4-D vectors.



From this Lagrangian we can generate the 4-D potential of the effect of all
other currents (or a single current) 72 on our test particle which has current j;.

:////af(sz)jz(:%z)d%dtz:////ozf(cQ(tl—t2)2—r32)jdth (12)

where si, = |71 — @2|? = *(t1 — ¢2)* — ri, is the invariant separation between I,
and 73 dV is the 3-D spatial volume and dt is the time. f(s},) is a function which is
zero every where but peaks when the square of the 4-vector distance s%, between the
source (2) and the point of interest (1) is very small. The integral over f(s%,) is also
normalized to unity. The Dirac delta function is the limiting case for f(s%,). Thus
f(s1,) is finite only for

81y = () — t3)* — 1]y = £ (13)

Rearranging and taking the square root

¢? c?
tl — t2 m ~ 7“12\/% ~ 7“12(1 + W) (14)
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So

2 62

t1 —ts) ~ — &+
(1 2) c 2¢ry9

(15)

which says that the only times ¢, that are important in the integral of A are those
which differ from the time ¢;, for which one is calculating the 4-potential, by the
delay ri2/c ! — with negligible correction as long as r13 > ¢. Thus the Bopp theory
approaches the Maxwell theory as long as one is far away from any particular charge.

By performing the integral over time one can find the approximate 3-D volume
integral by noting that f(si,) has a finite value only for At, = 2 x €?/2ry3¢, centered
at t; — rya/c. Assume that f(s}, =0) = K, then

<o ~ Ké [ j(t—rya/e T
A()) :/](tz,xz)f(sfz)dv?dtz ~ = /]( 12/ 2)dv2 (16)

12

which is exactly the 3-D version, if we pick K so that K¢? = 1.

5.8 Derivative in 4-Space

The 3-D vector gradient operator is DEL:

- Jd d 0
=(—, —. — 17
(8:11;7 oy’ 82) (17)
which behaves as a 3-D vector.
This can be generalized to 4-D:

Jg d d 0
0 = 18
(633707 633717 633727 63373) ( :

9



How does it transform?
Jg d d 0 )
ozl Oz ozl Oz

Operate first on a scalar function ¢(xq, 1, €2, x3)

0 = (

8q§(:1:0,:1;1,:1;2,:1;3) _ a¢ ax# _ a¢
Ox!) _ZM:@:L'M Ox!) _ZM:@:L'MRW

where R,, is the rotation matrix/tensor defined by
o= ) awr,
x, = Z(a_l)wl’/u

I

A=t = a' (T means transpose), if a is orthogonal.

so that

and O is a Lorentz 4-vector.

5.9 Operate with O

Operate with O on a Lorentz 4-vector, to get the dot (inner) product:

M. 8ct+8x+8y+82
r = R N — N
dct ~ dx  Jdy 0z

= 1+14+1+4+1=4=invariant

Now operate on velocity 4-vector u:

Ove  Oyv, 87vy+8’yvz

Jct dx dy 0z
0 1 0 v 0 v 0

O.-u =

Uz

v ]

This equation is an expression related to continuity.

10

NP e I-F oy Ji-F 02
0" 1 7

VI 52

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)



5.9.1 Hydrodynamics

Conservation of fluid matter is expressed by the equation:

dp

SV (o) =0 (27)

If one integrates this equation over a fixed volume containing mass M
/ pdxdydz —I—/ (pv)dadydz = M (28)

The first term is the mass contained in the volume and the second part is the
divergence theorem and yields:

oM
+ v-ndS =0 29
at sur face P ( )
% = - outward transport of mass and equals the inward transport of mass.

Since our expression for O - 4 is

E&ﬂ—59+ 'Qﬂ—52

the role of density is played by v = 1//1 — 2.

O-u =

) (30)

5.10 The Metric Tensor

Now before moving to make electromagnetism consistent with our relativistic
mechanics, we need to generalize the concepts of the distance, vectors, vector algebra
and tensors as they work in 341 D space.

The metric tensor defines the measurement properties of space-time. (Metric
means measure — Greek: metron = a measure.)

Cartesian — flat space

2 = Zgijdxidxj (31)

]

by definition ¢;; = ¢;; since the measure must be symmetric under interchange of
coordinate multiplication order.
In the general case: Cartesian — flat space

(ds)? Zg”d:p dx’ = scalar invariant (32)

7]

(Note the superscripts. Section of covariant and contravariant vectors explains this.)
If g;; is diagonal, the coordinates are orthogonal.

11



Physical interpretation: ¢; = h?, where h; is defined by the components of the
vector line element, ds; = h;dx;. An example of this is spherical polar coordinates:

ds® = dr® + r?df? + r23in20d¢2 (33)
1 0 0
gij = 0 7“2 0 (34)
0 0 r2sin?d

For the 3 4+ 1 dimension Minkowski space-time

ds® = d(ct)? = d(ct)? — da* — dy* — dz* (35)
10 0 0
0 -1 0 0

Jouw=Tw="10 0 -1 0 (36)

o 0 0 -1

In general the symbol 7,, is used to denote the Minkowski metric. Usually it
is displayed in rectangular coordinates (ct,x,y,z) or (xg, 1,2, x3) but could be
expressed in spherical (ct,r, 0, ¢) or cylindrical (ct,r, 0, z) equally well.

The off-diagonal ¢;; = ,/hihj(ci)si . cfsj) for © # j. An example is skew

coordinates in two dimensions.

By the law of cosines

ds®> = d:z;% + d:z;% + 2dxydrycosd
= 911d51?§ + 922d51?§ + gr2daiday + gardryda, (37)

dSl = dl’l, d82 = dl’g
gu=hi=1 gnhi=1

G12 = g21 = \/ h1hacosp = coso (39)

6= s 7] (10)

cos¢

12



5.11 Contra & Covariant Vectors

First we consider a simple example to illustrate the significance of contravariant and
covariant vectors. Consider two non-parallel unit vectors a; and a, in a plane with
ay - Gy = cost) # 1.

(€ 20)

A displacement from O to P can be represented by a vector, S. Its components
in the directions of é@; and @y can be denoted S' and S?:

S = 5%y + S, (41)

Another set of basis vectors @' and @*, respectively, may be defined, being
perpendicular to @; and Gy and having lengths found the following way: Let a3 be a
unit vector normal to the plane, proportional to a;xdaz. Then

-1 &2 X&g él

a = = (42)

&1 X&Q . &3 sinf

A ></\ /\2
=2 C (43)

&1 X&Q . &3 sinf

We denote the triple scalar product by [ ],,s-

13
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e 92
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/

@S,

The displacement vector, S may also be expressed by its components 57 and

Sy as follows:

§ - Slc_il —|— 5262.

(44)

The relations among S, S%, S1, and Sy may be found by elementary geometry:

They are:
v; = vl 4+ v2cos

vy = vicosh + v?

v! = (v — vycosh)/sin’0
2

v? = (—vicos0 + vy)/sin*0.
Using the original pair of unit vectors,
S? = (S 4 (S%) +2(8M)(S5?)cost
= ZZ: 9: 5"
ij=1

with the metric tensor

.,_[ 1 0050]
Jii = | cosb 1

Defined to be symmetric.
The tensor ¢ is defined by

2
> 97gik = 6.
i=1

It is easy to find that
g1 [ 1 —cosf
T gin20 | —cosl 1

14
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(46)

(47)
(48)

(49)

(50)

(51)

(52)



From this relation one finds that

SZ' = ngSj (53)
J

and ' N
SZ = ngsj.
J

The components S* are contravariant and the components S; are covariant.
The square of the length of S is (as given above)

(54)

ISP = g5 =) ¢ 5:S;, (55)
1,7

but is given more compactly by

§2 =% 5,90
J

Other relations of interest are:

(56)

. _ Signed Minor of g;;  Cofactor of g;;
g = =

57
Det g;; g ( )

For this example Det ¢;; = — sin?0; the cofactor of ¢;; is (—1)*g,;; =
p Yij g ; 9ij g;
(—1)"*7g;; because g;; and g are symmetric.

Returning to the original sets of basis vectors
_ &2 X&g &2 X&g
i'=—= (58)
ayxay-as [ Jpps

and others by cycling indices, by substitution one has:

. a’xa® a’xa®
a1 = alxa? - 43 = [ ]123 (59)
123 1 1
= — 60
) [ Jips  sind (60)
Also one has | |

Det(g") = = . 61
et(g") Det(gi;)  sin?6 (61)

15



5.12 Electric Charge

We now consider the implications for electric charge. We define electric charge density
as the charge per volume, p. We have a law of conservation of charge: Charge cannot
be created or destroyed. Thus

dp = o
a1 + V- (pv) =0. (62)

So the charge-current density Lorentz 4-vector
j = /3 = (pC, pvl’vpvyvpvz) = (j07j17j27j3) (63)

(where p = vpo) and )
0y =0 (64)

is the equation for the conservation of charge. j is the 4-vector charge current.
Now consider the vector and scalar potentials of the electromagnetic fields.

B = VxA where A):l///]dv
c

7

B v - %aa—zj where ¢ = /// P ;ZV (65)

=
Il

The Lorentz 4-vector potential is

~ ./JI
A — (q)7Ax7Ay7AZ) = (AO7A17A27A3) Where AM — l/‘// J dv (66)
&

7

Then the inner product gives

0-A = O,4%

ae N DA, N DA, N DA,
dct Oz dy 0z
100 =

cat+v 0 (67)

This is the equation of Lorentz gauge invariance.

5.12.1 Box on A is a four vector

It is clear that j = pot is a four vector since & was constructed to be one and we
constructed j as a scalar (rest frame charge density) times that four vector. However,
[ merely asserted that A was a four vector. That is true only if dV/r is invariant
under Lorentz transforms. We have this as an exercise for the student to show
that is true. The following are hints: Show that dV’ = (1 + fcosf)~ydV and that
r" = rvy (1 4 feosd) and thus dV'/r" = dV/r.

16



5.13 Lorentz Force Law

The 3-D vector form of the force law is
F=q(E+0xB) (68)

We need to write this in 4-D vector form to show that it is Lorentz invariant. The
relativistic force lay must involve the particle velocity and the simplest form is linear
in the 4-D velocity. The 4-D vector form then would be
F=2r.a  F=%p (69)
c c

To obtain the 4-D expression for the electromagnetic fields we need second
rank tensors, i.e. F),.

Since we want the force I}, to be rest-mass preserving, we have the requirement
that F,u* = 0 and thus F,,u*u” = 0. Since this must hold for all w*, the F,, must
be antisymmetric.

A cartesian flat-space second rank tensor has components C;;. The tensor is
the sum of a symmetric tensor S;; and an antisymmetric tensor A;;:

1 1
Cij = (04 + i) + 5(Cy = Cii)

Sij = Sjis Ay = —Ays (71)
The property of being symmetric or of being antisymmetric is preserved under

orthogonal transformations.
Now construct the antisymmetric tensor in a generalized curl

Fm/ = DMAV - DUAM = J"A, — aUAM = Al«u - AMJ' (72)
Note that
Foo = Fiy = Fyy = 33 =10
0As 0A; -
Fos=—="— —=(VxA), =8,
23 81'2 81}3 ( X )

Similarly, F31 == By7 F10 = BZ

C9Ay 0A 0D 0A,
Moo= g = o T o oa - e

and similarly Iy = —F, and I3y = —FE,. So the full tensor is

0 £k E, E
_|-E. 0 -B. B,
Fw=\_p B 0 =B (73)

~E. -B, B, 0

17



F,, is the electromagnetic field tensor.
The contravariant form of the electromagnetic field tensor is

0 -E, -E, —FE.
E, 0 -B. B,

wo_
= E, B. 0 _B (74)
E. -B, B, 0
One can raise and lower indices by use of the metric tensor.
Fu = ZZQMFWSQSV (75)
v s
In 3-D Maxwell’s equations are:
. . 10E g7
VXB——— = p—=*%=
8 c Ot P c
V-E = p
- o 198
VxE+-— =0
T
V-B =0 (76)
Now we take the 4-D divergence of the electromagnetic field tensor
0. F = j/e (77)

which reduces to the first two Maxwell equations. The continuity equation is simply
Ji=0. (78)

Since there were actually two possible ways to unify the electric and magnetic
fields into a single entity, we now define the dual electromagnetic field tensor:

0 B B, B
-B, 0 —E, B,
-B, E. 0 -E,
~B. —-E, E, 0

G = (79)

The second set of Maxwell’s equations can be simply written as

aGH
S =0 (50)

14

Or, if one does not wish to resort to the dual electromagnetic field tensor, then the
second set of Maxwell’s equations can be simply written as

DU P 4+ 9P P 4 7P = (81)

a generalized curl.
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5.14 Transformation of the EM Fields

One can derive the transformation of the electromagnetic field by using the Lorentz
force law F = q(ﬁ—l— Vxé) as a definition of the E and B (and by the transformation
of second rank tensors as shown below.) To derive the E and B requires using three
reference frames in order to see how both transform.

Do use the Lorentz force law we need a test electron or charge to probe the
force and thus how the fields must transform. We consider the field acting on an
electron located at the origin of three reference frames in relative motion.

F,E, B, FE, B FE. B
S, S S’

- ) <— ¢ relative to S,
~<— V relative td S’ Y relative 1o

<— ¢ relative to $,

— —_— e »
> Electron velocity ¢ in S .
Electron at rest in S, Electron velocity « in S’

The electron is at rest relative to reference frame S,, moving with velocity ©
with respect to reference frame S, and moving with velocity @ with respect to reference
frame S’. We arrange the coordinate systems so that the velocities all lie along the
x axes. Thus the relative velocity V of the frames S and S’ is given by the velocity
addition formula as

_ u—+v
14+ uv [ c?
We can write simple expression for the Lorentz force components in frames S,
S’, and S,, respectively:
S S So
F,=c¢l, Fl =el! F,,=cl,,
F,=¢F,—vB,) F,= e(E; —uBl) F,,=ek,,
F.=e(FE.+vB,) F =elE + uB;) F.=c¢ck,.
Note that in S, the electron is not moving so that the magnetic field does not produce

a force.
The equations for the transformation of force (for u/, = 0) give

Fx:Foac F;:Foac
Fy=F,n\/1=v?[c2 I =F, \/1—u?/c?
Fy=Fo /1 =02/ Fl=F,.\/1 —u?/c?

Ex - anc Eg/g - anc

1 —v?/c? B, —uB. = E,,/1 —u?/c?
E.+vB,=FE, /1l —v?/c? E! — uB), = F,.\/1 — u?/c?
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We can see at once that £, = . From the velocity addition law we have

v ufe+V/e

c 1+ (u/c)(V/e)

and thus
1 B 1422
\/m_ \/1—u2/02\/1—V2/02
Thus
E,—vB, 5 E, —uB]
V1 —0v?/c? " 1 —u?/c?
so that
u+V 1+ub By —uB!
l Y l+uv/e Z] : [\/1—u2/02\/1—v2/02 B \/m

If these equations are to hold true for all values of u, then since the terms which
contain v must be equal and those that do not must also be equal:

E,—VB,
1—=V2/e?
V/ie)E, + B,
1—=V2/e?
Similarly by equating the expression for F,. one finds
E.+VB,
1—=V2/e?
B - (V/e)E, + By
— Ve
This gives the transformation law for 5 of the six components of the
electromagnetic field. We are missing B, since we started with a stationary electron
in frame S,. This can be found by considering an electron moving at right angles to
B, and recalling that the force is unchanged in the  direction. Thus B, = B,..

Now do the derivation of field transformation from the transformation of a
second rank tensor and apply that to F),,.

F[w = Z Z auaauéFaé (82)
a8

E =

Y

:

~~

B! =

z

:

E =

z

:

[u—y

applied to either the electromagnetic field tensor F or its dual gives
Eg// = V(Ey - 532) Bg// = V(By + 5EZ) (83)
E.=~(E.+7B,) B.=17(B.-jE,)
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5.15 The Equations of Motion for a Charge Particle
The 3-D Lorentz force law

7o
S B) (84)

We can turn this into 4-D vector equation by first replacing dt = vdr and 3-vector
velocity ¢ by the 4-vector velocity .

FM:d—::qFMyu” (85)

5.16 The Energy-Momentum Tensor

First a brief review to provide motivation for the study and understanding of tensors:
(1) Electromagnetism described by a tensor field (4 by 4)
(2) Gravity represented by a tensor field (4 by 4)
(3) elastic phenomena in continuous media mechanics (classical 3 x 3)
(4) metric tensor for generalized coordinates
First we found a 4-vector equation of motion for a single particle:

dp® - dp dp”

= F"° =F —— =F"
dr dr dr (86)
Next we found the equation of motion for a single particle in an electromagnetic field
as:

dp® du®  xof

Later we will find that the equation of motion for a single particle in a weak gravitation

field is p p |
P u o
—d: = my d: = §/<;ha57umou u? (88)

The last equation the second rank tensor h,g is obvious but there is another simple
second rank tensor there myu®u”. This is an important tensor. The next paragraph
supplies a little more motivation to study this important and one of the simplest that
one could think to form.

In classical mechanics one has the concept that the integral of the force times
distance is the work done (energy gained) and that the gradient of the potential is
the force.

W:AE:/ﬁ-df F=-vv (89)

All this points to the need to develop the same concept in 4-D.

dj
AE = /F d:z;_/ P gz = dt dp_/ﬁ-dﬁ (90)
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From the last part of the equality one finds that the integral to get the “4-potential”
will involve p®u”. The tensor p®u” is labeled the energy-momentum tensor. We can
write out explicitly the tensor for a particle.

T°F = p*u® = mouu
% ah B
RGO AR T i o1)
B. BeB. ByB. Bl

since (u) = ye(1, Bz, By, 5:)-

The quantity, v*m,c* = vE, seems a bit strange but not so when we consider
a collection of particles or a continuum in density of material, p. p = ¥?p, since one
factor of 4 comes from the mass increase and another factor of v comes from the
volume contraction due to length contraction along the direction of motion.

5 ﬁk 5% 5%

af __ 02 e T MYy Mz

TU=rc s, 8.8, 3 Bb (92)
8. BuB. BB, B

and now we see that the energy-momentum tensor components are the transport of
energy-momentum-component in a-direction into the J-direction.

Consider an interesting case: a large ensemble of non-interacting (elastic
scattering only) particles — an ideal gas. For an ideal gas, < ; >= 0 and < f3;4; >= 0,

for ¢ # j, and < v2 >=< vz >=< v? >, so that the energy-momentum tensor is
diagonal
pc? 0 0 0 e 0 0 O
o 10 p<i> {0 P
CZ—‘ideal gas 0 p < U; > - 0 P (93)
0 p<vi> 0 P

where ¢ is the full energy density due to the mass density, and P = p < v; >? which
is easily derived for an ideal gas (PV = nkT = nm < v} >).

We can write a simple formula for the energy-momentum tensor for a perfect
fluid in a general reference frame in which the fluid moves with 4-D velocity u* as

T = (po+ p/e?) u'u” — pg™ (94)

which reduces to the equation above in its rest frame.

5.17 The Stress Tensor

Now we can consider the case of a medium or field that can have non-zero off-diagonal
components. First it is good to review the concept of stress. Stress is defined as force
per unit area, (same a pressure which is a particularly simple stress),
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Imagine a distorted elastic solid or a viscous fluid such as molasses in motion.
Imagine a surface (conceptual/mathematical) in the medium (The surface can and
will be curved or distorted.) with a plus and a minus side and unit normal vector for
every point on it. A differential area element dA, with normal 7 will exert forces on
each of its sides. The forces are equal and opposite by Newton’s second law, since
the mass of the element is zero. Figm =mad=0,%0 Fyon -+ F_on+ =0

The force per unit area on the small element of the surface is the stress. It is
a vector, not necessarily known. It underlies the dynamics of continuous media.

Consider a small piece of material at the surface

o
i ﬁ(z) = f(g)dxdz
dz 1 . .
dy i ﬁiét ];(LI) = Tyydydz
"

We define stress which stretches as positive and stress which compresses as
negative.

Clearly each of the three axes has a vector force associated with it so that we
have a second rank tensor field associated with the stress. We define the stress tensor,
E;; = T;);. Normal Stress is when the vector T(;) is co-directional with the normal

iﬁ(i).

It E;; = Cd;;, C is the hydrostatic pressure, if C' < 0.
Simple Tension Consider F;; = Cn;n;, then Ty = E)Z'j -n; = Cyng - ny = Cn;
thus is co-directional with pmn,;. If m; has directional orthogonal to n;, then
Ty = Chgng -1y = 0.

If C' is negative (C' < 0), the stress is simple compression.

Shearing Stress is specified by E}j = C(nmj + njm;)

We will see by example the following generalization: A simple tension
in one direction and a single compression along an orthogonal direction
is equivalent to a shearing stress along along shearing stress along the
direction bisecting the angle between the two directions.

In anticipation of later integration to 4-D we can call the stress tensor
E;; = T,; = Force per area on the surface along the ¢-axis along the surface with
normal in the j-direction by the material on the side with smaller a;. Since action
must equal reaction —T;; = force by material on the side of larger ;.

Now return to our infinitesimal cube of the medium, with sides lined up along
the cartesian coordinate planes:
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| I
dy| ﬂ
L |4
/ dz
dx
X x 4+ dx
> X

Z

Consider the front face: F, is exerted on it toward inside in the z-direction is

T
The force on the back face is
Fo = 4T (2)dedy = T, (x)dydz (96)

The net force on the cube is F}, is exerted on it toward inside in the z-direction is

T.Tl’
F, = _88:1; dxdydz (97)

It T, > 0, inside pushes on the outside, pressure: compressive stress. If
T, < 0, inside pulls on the outside, tension: tensile stress.
T,, and T, are shear stresses.

N A Tl’y
A
R
! |
[ |
dy [ |
Lo |-
s dz
dx
X x 4+ dx
> X

Z

Similarly to the treatment above the net force in the y-direction, Fj, on the
front and back face is
0Ty

F, = 5 dxdydz (98)
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and

Tl’Z
F, = _88:1; dxdydz (99)
Thus the total F, on the material inside is
F, total = — ( 5 + 5 + 52 ) dxdydz
3 OT.
po— oy Mgy 100
2 (100

Now consider F} on the two faces perpendicular to x and F), on the two faces
perpendicular to y as exerted from the outside.

Fy = —TyydA,.

_—

Fy — —I'Tyachyz l T Fy = _TywdAyZ

—-—

F,=+4T,,dA,.

The sign changes because from the surface the force is toward the inside. Now
calculate the net torque. The two = faces have a counter-clock-wise torque:

torque from x — face = Force x moment arm = (T,,dydz)dx /2 (101)

torque from y — face = — (T dvdz)dy /2 (102)
To the net torque is
d
7= (T, — Tyo)dedydz /2 = Jd—‘; (103)

where I oc mr? ~ p(dxdydz)r? is the moment of inertia and dw/dt is the angular

acceleration so that J
Tyy — Ty przd—j (104)

as we consider an infinitesimal cube, r*> — 0 so that
Tacy = Tyx (105)

which means the stress tensor must be symmetric. The stress tensor is symmetric, so
only six independent components.
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5.18 Consideration of Shear

Simple  shear  displacement is  like  sliding a  deck of  cards.

A pure shear displacement keeps the center at the same place and is what our

four forces try to do:

It the little cube is cut differently, e.g. cut at 45° to the previous cube, a
different effect occurs:

Thus pure shear is a superposition of tensile and compressive stresses of equal
size at right angles to each other.
Let us follow our example of shear a little further:

0 T, 0
T,=|T,, 0 0 (106)
0 0 0

We can look at the transformation properties by considering on the 2 x 2
portion. Now rotate the axes 45°. How do the tensor components change?

Sz{j = ZZaikaﬂSM (107)
ko
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where a;;, is the matrix for the coordinate transformation, rotation:

2] [ann ap]fx] [ cosd sinb] [z
[y/] B [G21 Gzz] [?J] B [—Sine 0059] [?J] (108)

For 45°, the rotation matrix is:

1 1
4= | A %] (109)
V2 V2
so that
Ty, = (1G11)2T11 + ar2a111o1 + ar1a12119 + ar2a91 19
= 5 (Th1 4 Tor 4 Thz + Taz) =Ty = Thy (110)
Ty = anandin + arralis + a12a91 151 + ar2a2915
= 5(—T11-|-T12—T21—|-T22) =0 (111)
Ty = 6{21G21T11 + agrag919 + agga01 o1 + agga92159
= 5 (Th1 — Tha — Tor + Tog) = —To1 = =Tz (112)
So that for the 45° rotation we have
[T 0 ]
Lij = [ 0 =Ty (113)

Thus we have shown that a pure shear stress rotated by 45° is equivalent to equal
amounts of tension and compression stress at right angles to each other with the pure
shear bisecting the angle they make.

5.19 Electric and Magnetic Stress

In this section we see that using the Faraday lines of force concept that both the
electric and magnetic field lines can be under tension or compression and thus by the
argument just above under shear stress.

First consider two opposite charges, magnitude ¢, a distance 2d apart, located
symmetrically opposite the origin on the z-axis. The force between them is F' =
q*/(4d?*) according to the Coloumb law. We can imagine putting a metal plate (perfect
conductor) in the y — z plane and know that an image charge will form and have the
same force on it and thus the plate. This makes sense in terms of the Faraday lines
of force. We can calculate the total integrated mean square value of the electric field
in the y — z plane.
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]
L

<

{

The only non-zero component is E, = 2qcosf/r* = 2qd/r® where r* = p*d>.

o 2wpd < d[p* + d* 1 21 q*
/Esz — 4q2d2/ ( Tp p)S — 47Tq2d2/ [p —I_ ] — 47Tq2d2 p=0 — Tq
0 p

p? + d2 —o (p? + d2)3 2(p? + d2)2 =
(114)
The actual force between the charges is ¢*/(4d*), so that the force per unit
area in field must be g which is a tensile stress and is along the lines of electric field.
Now consider the same situation but with both charges having the same sign.
In this case the lines bend and become tangent to the y — z plane and are clearly in
compression. By symmetry the only non-zero component of the electric field is that

that goes radially (in the p direction).

2q 2qp _ 2qp
2 _ — —
Ep = ESZTLQ = ﬁ; = r—3

where EZ = Ey2 + E?. Again we can compute the total integrated mean square electric
field strength in the y — z plane:

% p? 0o (r2) — (2 1 d? » 27q?
/EZdA = 4q2/0 :j—627rpdp = 47rq2 /d2 %d(rz) = 47"92 l ] |io =

r2 o 2(r2) IE
(115)
Thus again we find the compressive stress perpendicular to the electric field lines is

E?/87.
Consider another simple case of tension along the lines of electric field, which
is the familar simple capacitor.

28

d?



el
el

+ - T
+ - T—
+ TR
+ - I
+ i
+ —
_I_ -

_I_ -
+ SR

Clearly the lines of force, electric field lines are under tension. We can consider
the charge on each of the capacitor faces to have a surface charge density equal to
o. Then by Gauss’s law we can construct the usual pill box which has a uniform
electric field passing though the face with area A and not on the sides or outside face.
Thus in Gaussian units 470 = F (in Heavyside-Lorentz units, o = E) and the force
between the plates per unit area is

r
A

= (116)

Fo 2
2 87

(or in Heavyside-Lorentz units, £%/2).
Now we turn to magnetic stress. First consider a very long solenoid or a current
sheet.

i T F Integral Path
pod
|7

The magnetic field is parallel to the solenoid and

so that B = 4xj/cl. The Lorentz force on the current is
F=q(0xB)=jxB

The force per unit area is equal to the average of the magnetic field at each edge of
the solenoid or for an ideal solenoid this is half the internal magnetic field. We then
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have pressure stress
cB?
Pmagnetic = 3 (117)

s
The factor ¢ depends upon the units one uses. Thus we see that like the electric field,
the magnetic field can have compression perpendicular to the magnetic field lines.
Now we observe tension along magnetic field lines. Consider two magnets
placed with poles near each other. If the poles are opposite, the magnets are attracted
— tension in the direction of the lines. If the poles are the same, the magnets are
repulsed — compression perpendicular to the lines.
We can see that this reduces to exactly the same case as for the charges
calculated above by considering two long magnets.

N S N 5

N S\ \N S

As the magnets get longer and longer, each pole acts exactly as if it is an
isolated charge and the math is the same.

Now we see that we need to have a momentum-energy tensor or more properly
stress-energy tensor for electromagnetism.

5.20 Stress-Energy Tensor

We need to generalize this to 4-vectors and Lorentz invariance. This will require the
use of second rank tensor - the stress-energy tensor.

In relativistic mechanics for continuous media the energy-momentum or stress-
energy tensor, T%?, is usually defined as:

where p is the density and E% is the Cartesian stress tensor usually defined as
the tensor that describes the surface forces on a differential cube around the point
in question. The normal surface force is pressure but there can be terms for
tension/compression and shearing stress.

Then the equations of motion of a continuous medium is

o1
_ aB _ B
Y g =T =1 (119)

[}

where f” is the 4-force density. That is the net force on material in a volume V is

=[] = ] (120

where the last equality comes from invoking Stoke’s theorem.
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In the case of electromagnetism in the 3-dimensional form the parallel
equations are

_):///(E+ﬁx§)pd3V:///(pﬁ+jx§)d3v (121)
v v
Thus the force density fis

f=pE+jxB (122)
Now we want to replace p and ; by the fields via Maxwell’s equations.

=V -F VxB———
’ ] = c Ol

-

Thus .
- 10F
(V E)E—I—(VXB——%—XB
c

f=
Through suitable use of Maxwell’s equations this can be recast to

F=(V-E)YE—Ex(VxE)+(V-B)B— Bx(VxB)— —v (B* + B?) - o (X B)
c

This is not a particularly elegant expression but is symmetrical in E and B. The

approach can be simplified by introducing the Maxwell Stress Tensor,

1 1
Tij = (EiE]‘ — 552']‘E2) + (BZ'B]‘ — 552']‘32) (123)
For example the indices ¢ and j can refer to the coordinates x, y, and z, so that the

Maxwell Stress Tensor has a total of nine components (3 x 3). E.g. with € and pq
explicitly stated instead of the units we usually use with ¢

Leo (B2 — B2 — %) + 5 (B2 — B2 - B?) e (B, E,) + L (B.B,)
T, = e (E.E,) + L (B.B,) Leo (Ej — B2 Eg) — (Bj — B?— Bg)
€0 (Esz) —I' MLO (Bsz) €0 (EyEz) —I' :_0 (Bsz) %60 (

And thus the force per unit volume is then

=L

f=v. (124)

Sk

1
2

And by Stoke’s Law

//uf A= _QE/// S&v (125)

This turns out to be a much more compact equation in 4-D vector notation.
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For 4-dimensions the force law is f* = F*j,.
We want the full generalized relation between the energy-momentum tensor,
T8, and the 4-force to be:

F=0.T (126)
Ly
Poy aaT =T =T (127)
Ty ’ ’

14 14

where the last term represents the repeated indices summation convention. One

uses index indicates partial derivative with respect to @,,inder and repeated index to

indicate summation on that index to make the equations easier to write and view.
For example,

fl’ - Tl’l’,x —I_ Txy,y —I_ sz7z
force, = Apressure + Ashear stress (128)

For electromagnetism the force equation is
Juo=Fuwi=FulFies (129)
since F; , = j,. Thus we have
Ty = Fo Py (130)

A tensor satisfying this equation is

1 1
T =~ [FWF;“ _ Z%Faﬁwﬁ] (131)
T = S [FWF” — l(SMFOW’F ﬁ] (132)
47 ¢4 “
T = b [FWF” — lngW’F ﬁ] (133)
47 ¢4 “
First consider the Maxwell stress tensor,
1 9 1 1 9
Tij = € (EZE] — —52']‘E ) + — (BZB] — —52']‘B ) (134)
2 Ho 2
__ €0 2 2 2 1 2 2 2
Tor = 5 (B2 - B2 - E?) + o (B2 - B2 - B?) (135)
1
Tyy = co (B Ey) + (B:By) (136)

Ho
and so on. Bear in mind that the stress tensor is symmetric. It is also possible to
add some additional terms.

1 1~ =
%= (B2 + B*) + V(@) (137)
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: 1 1
O __
1‘_Eﬂbﬁh+ﬂvm&m (138)
d

. 1 — — 1 = =
Tm:g;(ExBL+1;VX@Eﬂ—Qﬂj@E0 (139)

The added terms uses the free field ; = 0 Maxwell equations and included for
completeness. If the fields are reasonably localized, then T is the field energy
density, and the 7% = cP}ield is the components of the field momentum density or

the Poynting vector S. Thus a simplified form is

—

7, = |7 (B o (140)
g S Maxwell Stress Tensor
BB E,B. — E.B, E.B, — E,B, E,B, — E,B,
1 |EB.—E.B, WHENEBE) E.E, + B, B, E,E. + B,B,
Y Ar | BB, — E.B, E,E, + B,B, (B~ P —F )15, = B, = F:) E,E. + B,B.
E.B, — E,B, E.E. + B.B, E,E. + B,B. (B~ B~ Fy) (B -5, B,)
(141)
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5.21 Bopp Theory

In classical electromagnetic theory there are two additional factors that must be taken
into account: (1) the finite speed of light which means that the charge distribution
can change and the change only propagates at the speed of light and (2) the 1/r form
of the potential means that any point charge has infinite energy. To take into account
the motion of charges one must end up using retarded potentials. In 3-D one has:

/] r”/c “) v (142)

Bopp suggested a simpler form of the 4-vector potential which he thought
might handle both problems:

:////ju(tzafz)f(sfz)dv?db (143)

Where f(s},) is a function which is zero every where but peaks when the square of
the 4-vector distance si, between the source (2) and the point of interest (1) is very
small. The integral over f(s},) is also normalized to unity. The Dirac delta function
is the limiting case for f(s?,). Thus f(si,) is finite only for

3%2 = 02(t1 — t2)2 — r%z A +¢? (144)

Rearranging and taking the square root

I / ¢? ¢
C(tl — tz) ~ T%Q 4 €2 ~ 12 1+ TT ~ T12(1 + W) (145)
12

12

So P
(t— 1)~ 2 &

c 2¢ry9

(146)

which says that the only times ¢, that are important in the integral of A, are those
which differ from the time ¢;, for which one is calculating the 4-potential, by the
delay ri2/c ! — with negligible correction as long as r13 > ¢. Thus the Bopp theory
approaches the Maxwell theory as long as one is far away from any particular charge.

By performing the integral over time one can find the approximate 3-D volume
integral by noting that f(si,) has a finite value only for At, = 2 x €?/2ry3¢, centered
at t; — rya/c. Assume that f(s], =0) = K, then

K y
AE) = [l ) iVt~ B [IOZRIOR) )

712

which is exactly the 3-D version shown above if we pick K so that K¢* = 1.
This manner of thinking eventually leads one to the interaction Lagrangian as
a the product of the two currents (electrical, matter, strong, weak, gravitational).
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5.22 The Principle of Covariance

The laws of physics are independent of the choice of space-time coordinates.

General Relativity applies this to all conceivable space-time coordinates:
rotating, accelerating, distorting, non-Euclidean, non-orthogonal, etc.

Special Relativity applies this only to the choices of Euclidean (pseudo-
FEuclidean), non-rotating coordinate moving with constant velocities with respect to
each other.

Einstein said that this principle is an inescapable axiom, since coordinates are
introduced only by thought and cannot affect the workings of Nature.

Therefore the Principle of Covariance cannot have Physical Content to
determine the laws of any part or field of physics.

Tensors are essential because all tensor equations of proper form are manifestly

covariant; their functional form does not change when coordinates are changed.
(Proper form means that both sides of the equation result in tensors of the same
rank and, if the equation matches the classical limit formula, then it is the only
correct form. get the stuff in these parentheses, precisely right.)
The form of a tensor equation provides no guide for selecting a particular
“fixed” or “at rest” coordinate system. However, its content may provide this.
Covariance Language has heuristic invariance:
(1) It guides in proceeding, without telling where to go.
(2) It helps to prevent errors from staying with particular coordinates (through
oversight or error).
(3) One should take as a first approximation to physical laws those which are simple
in tensor language, but not necessarily simple in a particular coordinate system.
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