
Table 1: Planck Dimensional Quantities

Planck QP = f(�h;G; c) Value

Length LP =
�
�hG
c3

�1=2
1:6� 10�35 cm

Time tP = LP
c
=
�
�hG
c5

�1=2
5:4� 10�44 sec

Mass MP =
�
�hc
G

�1=2
2:2� 10�5 g

Energy EP =
�
�hc5

G

�1=2
1:22 � 1019 GeV

Temperature TP =
Ep

k
=
�
�hc5

k2G

�1=2
1:42 � 1032 K

Density �P = c5

�hG2 5:16 � 1093 g/cm3
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1 Quantum Gravity

This course ends with a summary of the issues of quantum gravity. These include
quantum e�ects in classical gravity such as Hawking radiation, quantum 
uctuations
in In
ation, and radiation seen by an accelerating observer. There are problems of
extreme 
uctuations in the metric and the formulation of a consistent quantum theory
of gravity. This shows both fundamental 
aws in the classical gravity and quantum
mechanics which are the two major edi�ces of 20th century physics. We take a brief
excursion into zero point radiation showing that underneath there is a deep connection
between the structure of space-time (the vacuum), gravity, and quantum mechanics.
Then we head to the wave equation for the Universe and the wave function of the

Universe as the grand �nale.

1.1 Curvature/Horizon Radiation

In our discussion of the laws of black holes and the parallel to thermodynamics
we found an expression for the e�ective temperature and entropy of a black black
hole. Then we saw that Steven Hawking (1975 \Particle Creation by Black Holes"
Commun. Math. Physics 43, 199-220) showed that quantum e�ects produced a
thermal radiation from the surface gravity and horizon. For your homework you did
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Table 2: Quantum Mechanics in a classical curved spacetime

A) Hawking Radiation gravitational �eld kTH = �h�=2�c

B) Unruh Radiation acceleration (Eq. prin.) kTU = �ha=2�c

zero point radiation

C) de Sitter Radiation horizon kTS = �hH=2�

D) In
ation perturbations small horizon �� = H=2�

hh2GW i1=2 =
p
16� �phi

mp
=
q

2
�

H
mP

D
h2�

E1=2
= V �phi

V 0m2

P

a heuristic calculation of the spontaneous creation of particles in a �eld (electric,
magnetic, or gravitational) to see how this happens. The e�ective temperature of the
black hole from both approaches is given by the formula:

kT =
�h�

2�c
=

�hc3

8�GM
T ' 6 � 10�8

�
M�

M

�
K (1)

S0 = S +
1

4
k
c3A

G�h
(2)

Both this calculation and the estimate of quantum 
uctuations in In
ation
were made in a classical, though curved, geometry. That is the background metric
was well-de�ned and smooth in the region of interest. The metric itself did not
undergo 
uctuations in the straight forward approach. It is also possible to derive
the 
uctuations in the In
ation case as 
uctuations in the scale factor or in the scalar
�eld driving in
ation.

1.2 Quantum Fluctuations from In
ation

The existence of a horizon - a result of the de Sitter accelerating universe of in
ation
- sets a scale for quantum mechanical uncertainty to act. If the expansion rate is
(v = Hr, H � _a=a), then there is a distance dH between two points at which they
are moving apart at the speed of light dH = c=H. Points that are further apart than
that are out of causal contact. The uncertainty principle would imply that there will
be quantum 
uctuations in energy and momentum on the scale of �E ' �pc � �hH.
The �rst Friedmann equation gives us a relationship between the energy density �
and H:

H2 ! 8�G�=3 =
8�

3m2
P

V (�)

If H is su�ciently large, then one can expect that 
uctuations in the in
aton
�eld � will result in 
uctuations in the metric, curvature 
uctuations of order

�g�� = h�� �= 8�G�E = �hH =
�
EInflation

EP

�2
.
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Although a rigorous calculation entails many subtleties, especially the
hypersurface- or gauge-dependence of the 
uctuation amplitude when it is in
ated
outside the horizon, there is a useful mnemonic for the �nal, correct answer. First,
the scalar curvature 
uctuations on a given scale as that scale is stretched outside
the horizon during the de Sitter (in
ationary) epoch can be understood as a local
variation in the universe's scale factor a.

�lna =
dlna

d�
�� =

dlna

dt
=
d�

dt
�� = H=

d�

dt
��; H � dlna

dt
: (3)

In a de Sitter background, the rms 
uctuation in the in
aton is h��2i1=2 = H=2�.
Tensor 
uctuations in the metric are produced by the same basic process and in rough
equipartition but with a coupling of of

p
16�G:

hGW =
p
16�G��GW =

p
16���GW=mP l; (4)

where each component of the metric undergoes 
uctuations with rms amplitude

h��2GW i1=2 = H=2�. (One must include the fact that there are two tensor degrees
of freedom but only one scalar.)

How do these curvature 
uctuations evolve to the surface of last scattering?
For both scalar and tensor 
uctuations, the amplitude for a given wavelength is
frozen from when the wavelength is stretched outside the horizon during the de
Sitter epoch to when it re-enters the horizon during the Friedmann-Robertson-
Walker epoch that follows. Hence, the amplitude upon re-entering the horizon
simply equals the amplitude when exiting during the de Sitter epoch. Hence, for
gravity waves, the amplitude on the surface of last scattering is determined from

Eq. (4), hh2GW i1=2 � (2=�)1=2H=mP l. For the scalar �eld 
uctuations, the curvature
perturbation � ln a during the de Sitter epoch can be related to the 
uctuations in
the density through the relativistic continuity equation

d�

dt
+ 3H(� + p=c2) = 0; H � dln(a)

dt
; (5)

where p is the pressure. Multiplying through by �t we have

��+ 3(� + p=c2)�ln(a) = 0 or �ln(a) = �1

3

��

(�+ p=c2)
: (6)

(The last expression has been shown to be gauge-invariant (Bardeen et al.1983).) The
curvature perturbation when a given scale re-enters the horizon in the Friedmann-
Robertson-Walker epoch equals �ln(a) = �1

3

��
(�+p=c2)

when the scale was stretched

beyond the horizon during the de Sitter epoch. From the slow roll condition, Eq. (??),
and using H2 = 8�V (�)=3m2

P l, one �nds

�lna = � 3H2

V 0(�)
�� = � 8�V

V 0(�)m2
P l

��: (7)
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Thus the scalar (density) metric 
uctuations amplitude depends not only on the
energy in the scalar �eld (on the expansion rate) but also on the gradient of the
�eld's potential.

In sum, we estimate that the ratio of rms gravity wave curvature 
uctuations
to those from the scalar �eld is

< h2GW >1=2

< h2� >
1=2

=

s
2

�

V 0(�)mP l

V
; (8)

where this expression is to be evaluated when the scale of interest was stretched
beyond the horizon during the de Sitter epoch. For cosmologically observable scales,
this corresponds to roughly 60 e-foldings before the end of in
ation.

1.3 The Holographic Principle

Consider the following argument on the maximum entropy allowed in a �nite volume
of space. This leads to the conclusion that all the information in 4-D spacetime
actually resides on a 3-D surface. According to the Schwarzschild solution, the mass
of a black hole is given by its radius: rs = (G=c2)M . Hence, the mass M contained
within a sphere of radius R obeys

M
<

�
R natural units M

<

�
(c2=G)R

The result for the entropy (and radiation) had an ultraviolet cuto� that there not be
more than one Planck mass per Planck volume. For larger regions this cut o� would
permit M � R3, in violation of our previous Schwarzschild limit M <

�
R. Hence our

cut-o� was too lenient to prevent black hole formation on larger scales.
For example, consider a spher of radius R = 1 cm, or 1033 Planck lengths.

Suppose that the �eld energy in the enclosed region saturated the naive cut-o� in
each of the 1099 Planck cells. Then the mass within the sphere would be 1099. But
the most massive object that can be localized to the sphere is a black hole of radius
and mass 1033.

Usign the spherical entropy baound, A=4 degrees of freedom are su�cient to
describe fully any stable region in asymptotically 
at space enclosed by a sphere of
area A.

Holographic Principle: A region with boundary of area A is fully described by

no more than A/4 degrees of freedom, or about 1 bit of information per Planck area.

A fundamental theory, unlike local �eld theory, should incorporate this result.
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1.4 The Generalized Uncertainty Principle

The Heisenberg Uncertainty Principle tells us that the fundamental uncertainty in
position and thus spatial resolution is related to and limited by the uncertainty of
the momentum related with that direction.

�x�px � �h=2 or �x � �h=2�px (9)

That means if we want to probe and resolve to a distance �xwe must have a minimum
available momentum �px � �h=�x. Thus:

dP lanck

EP lanck

�hc=E

hhhh
XXX

HHH

QQ

@
@@

S
S

A
AA

E
E
E

rs

���
���

���
���

���
���

���

�x

E; pc;E � pc� mc2
-
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We also know that if we concentrate energy E within its Schwarschild radius, we can
get no information from inside the Schwarschild radius.

rs = 2GE=c2 (10)

These two limits cross each other at the Planck energy EP lanck and distance
dP lanck which can be calculated by setting the two distances equal and solving for the
energy and then feeding back to get the distance.

EP lanck =

 
�hc5

G

!1=2

= 1:22 � 1019GeV (11)

lP � dP lanck =

 
G�h

c3

!1=2

= 1:6� 10�35m (12)

This would then be the logical end point of black hole evaporation. I.e. either
the �nal and smallest black which falls apart or a stable quantum relic. Understanding
this issue is one of the motivations for quantum gravity.

We can write the Generalized Uncertainty Principle in a suggestive form (there
is a factor of two 
oating here �x�p � �h=2):

�x � �h=2

�px
+ l2P

�px

�h=2
(13)
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or in units of Planck lengths

�x

lP
=

lP�p

�h=2
+

�h=2

lP�p

�x = �p +
1

�p
natural units (14)

Note the symmetry or inverse correspondence of �px in units of �h=2 and the
prominence of the Planck length lP . This is suggestive of the idea of duality that
1=x is equivalent to x.

Note a similar argument can be used to go to more generalized coordinates. A
general rule for commutation relations in non-commuting geometry is

[xi; pj ] = i�h�ij

 
1 +

l2PE
2

4

!1=2

= i�h�ij

 
1 +

l2P (p
2 +m2)

4

!1=2

(15)

which leads to the uncertainty relation

�x��p�
>

�

1

2

Dq
1 + l2pp

2=4
E

(16)

This may not be the full story. One could argue that in four dimensions In
particular, consider time, or proper time uncertainty. Using the commutation relation
we would have

�t�E � �h

 
1 +

l2P�E
2

4

!1=2

�t �

�
1 +

l2
P
�E2

4

�1=2
�E

We know that to probe short times requires high energies but if the information
gets hidden in a black hole we have to wait until the black hole evaporates to get
access to the information. The usual time-energy uncertainty principle is

�� � �h

2�E

a more extended version for the Planck length is set by the light travel time
�P lanck = lP=c plus the decay time for a Planck-sized black hole.

�total = �P lanck + �BH =

 
G�h

c5

!1=2

+ � 103�P lanck

Geometry (topology) appears to persist longer than light propagation time across the
external dimensional scale.
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1.5 Zero Point Radiation

Consider a classical vacuum with all matter and thermal radiation removed. Is there
anything else in the vacuum. The classical answer is yes. There is what we shall
call the zero point radiation which is an isotropic, homogeneous radiation �eld with
spectral intensity proportional to the frequency cubed.

1.5.1 Casmir Force

The �rst indication that we have that this �eld must exist is the measured Casmir
force. If two uncharged metal plates are placed in a very cold vacuum, there is a force
that attracts one plate toward the other in an amount proportional to the area of the
plates and the inverse fourth power of the separation.

FCasmir =
�2

240

�hc

d4
A = 0:2mg

A

d4
0:5� 10�4cm

1 cm2
(17)

Exercise Show that this is the force law if there is a radiation �eld with I / �3.

1.5.2 Consistent with Special Relativity

Show that an isotropic, homogeneous radiation �eld with I / �3 is the only radiation
�eld that is identical for all Lorentz-frame observers. That is that one cannot
determine one's absolute velocity by measuring the intensity, angular distribution,
or spectrum of this radiation. (Hint: Show that I=�3 is proportional to the number
of photons in a quantum state at frequency � and thus is a conserved number.)

1.5.3 Ideal Harmonic Oscillator

Suspend an electron from an ideal spring �xed on the inside wall of an ultracold,
ultrahigh vacuum chamber. (i.e. perfect vacuum and no thermal radiation)

If the electron is displaced from its equilibrium position, then it will begin
to oscillate and the acceleration will cause it to radiate. The back reaction of the
radiation on the electron will damp down the oscillations to match the radiated energy
and the electron oscillations will asymptotically approach zero amplitude.

Now if you include the e�ect of the radiation �eld with I / �3, show that the
electron continues to oscillate randomly with an amplitude that corresponds to the
Uncertainty Principle and with a rms energy equal to the zero point energy of the
harmonic oscillator. Thus the name zero point radiation even though no quantum
mechanics is thus far involved in this classical vacuum radiation �eld.

This is made manifest in the Lamb-Reherford shift in hydrogen atom energy.
Because of zero point 
uctuations, the nominal path of an electron around proton
(nucleus) has a jitter to it around the nominal mean radius. Because the potential
V (r) = �e2=r, the e�ective potential energy for the electron is given by averaging

7



the Taylor series expansion:

hV i = �e2
 

1

hri +rVhri hr� < r >i+ 1

2
r2Vhri

D
r2� < r >2

E
+ h:o:t:

!

Clearly the linear term averages to zero e�ect but the second order (mean square
working on curvature) results in a shift from nominal equilibrium.

1.6 Vacuum Energy

The zero point energy (h�=2E) for each of the modes will add up to a tremendous
amount of energy

�vac =
�h

2�2c5

Z
!3d! = 4�h

Z
�3d�

If we use a cut o� at the Planck length (for wavelength) we �nd a density of zero point

uctuation energy in vacuum of order 1094 gm/cm3. To be compared with typical
nuclear densities of about 1014 gm/cm3.

1.6.1 Uniformly Accelerating Observer Radiation

Show that an uniformly accelerating observer will see two radiation �elds the zero
point radiation with I / �3 and a thermal spectrum of radiation with

Tacceleration =
�ha

2�c
T ' 4� 10�23a K=(cms�1) (18)

Showing this relation then shows consistency with the Equivalence Principle since
a surface gravity � = gs gives exactly the same temperature. This also shows
that black body radiation (Planckian distribution) arises classically from relativity
without recourse to quantum mechanics. Therefore we can conclude that some how
gravity/space-time and quantum mechanics are related at some deep fundamental
level.

1.7 Quantum Field Theory & Issues

Now that we know gravity and quantum mechanics are deeply related, then we are
ready to create a quantum �eld theory for gravity. First what is a �eld theory? Two
examples of �eld theory are:

Newtonian Gravity:

~F = ~Fgm =
GM

r2
mr̂ (19)

where ~Fg is the gravitational force �eld.
Electromagnetism:

F� = F��j
� (20)
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where F�� is the electromagnetic �eld tensor.
We showed as part of the homework that the �elds of two objects create a

force through the mechanism of distorting the �eld lines to the minimum energy
con�guration so that there is a net force because of the �eld distortion.

Then quantum mechanics started with the �rst quantization of the relevant
measurable quantities of the particle or system under consideration.

The second quantization is the quantization of the �elds allowing them to be
treated as force carrying particles that are interchanged. This is the concept behind
the Feynman diagrams of particle interactions and this approach is called Quantum

Field Theory. A quantum �eld theory for gravity calls for a force carrier particle
given the name the graviton which is expected to be massless to obtain the 1=r2 force
law and to have spin 2 in order to always be attractive.

This all sounds great so what are the issues holding us back from a full �eld
theory of quantum gravity?

We will need a third quantization: an operator that creates and annihilates
universes. This is daunting in that one does not think of seeing universes created and
destroyed regularly. But wait there is more:
(1) Quantum �eld theories are based on the assumption that the wave function
commute: h

 ̂(x);  ̂(x0)
i
�  ̂(x) ̂(x0)�  ̂(x0) ̂(x) = 0 (21)

That is to say that if x and x0 are causally disconnected, then a measure at x0 of  ̂
cannot in
uence the value of  ̂ at x. However what is the wave function for gravity?
It is going to be the probability amplitude of the metric. Does

[ĝab(x); ĝab(x
0)] = 0? (22)

Only when x and x0 are in a space-like relation. We only know this is true when we
know what gab is and we are trying to �nd its wave function and thus uncertain value.
(2) Superposition is taken for granted in quantum �eld theory. The wave function
is routinely written as the sum over the orthonormal basis set of the wave equation
 =

P
states which assumes linearity However, gravity is non-linear and even more

of a problem the curvature of spacetime and a graviton are not readily separable
especially when the �eld strength variations are large.

insert picture showing curved space, add a recognizable graviton, and then a
chaotic structure of spacetime and defy the reader to �nd the graviton.
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If something does not intervene by the Planck scale, the metric is so deformed
that one is looking at a picture of spacetime foam rather than a nice simple
Riemannian space. Topology changes are possibilities. Were this the case, then
because of the non-linearity of gravity, one could �nd a dispersion relation where
more energetic particles interact with and back react on the existing curvature:

p2c2 = E2

2
41 + �

E

Ep

+ �

 
E

Ep

!2

+ :::

3
5

v =
@E

@p
' c

2
41 � � E

Ep

� �

 
E

Ep

!2

+ :::

3
5

Thus a sharp pulse of light or particle of high energies coming over great distances
would be dispersed according to the energy.
(3) Time: The entire causal structure of spacetime is destroyed when one attempts
to quantize g�� . Microcausality ... need background metric ...

...... superspace as a desired solution

ds2 = c2dt2 � g0adtdx
a � gabdx

adxb

i
@ 

@t
= H 

 (~x; t) = N

Z
c
�x(t) eiS(x(t))

where N is the normalization and C is the class of paths which are weighted in a
away that re
ects the projection of the system.

1.8 Wave Equation for the Universe

The usual approach to �nd a wave equation is to de�ne an action

IHilbert =
1

16�

Z
d4x
p�g [R+ 2�]

Then by calculus of variation one �nds the Lagrangian or Hamiltonian and then the
momenta replaced by operators (derivatives) yielding.

"
�h2
8�

G
Gijkl

�2

�gij�glk

g1=2

8�=G

�
(3)R(x) � 2� � T

�#
 (gij) = 0 (23)

where

Gijkl =
1

2
g�1=2 (gikgjl + gilgjk � gijgkl) and T = T 0

0 (�;�i@=@�) (24)
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This is not such a bad equation since it is for three instead of four dimensions
and gab is symmetric tensor giving us only six unknown functions. This is still a bit
much for this class but fortunately we can appeal to some boundary conditions and
symmetry.

1.9 Wave Function for the Universe

For a homogeneous, isotropy universe with a constant vacuum energy density �v this
reduces to a one dimensional problem. We get a wave equation which has as its
classical analog the Friedman equation, ( _a=a)

2
+ 1=a2 = �=3, for a vacuum energy

dominated universe (aka as DeSitter Space).

"
d2

da2
� a2

�
1 �H2a2

�#
 (a) = 0 H2 = 8�G�v=3 (25)

which has solution of the form a(t) = a0cosh(ct=a0), where a0 =
q
�=3. This is the

form of the Schr�odinger wave equation for a particle of zero energy with coordinate
a(t) (the scale factor for the universe) in potential U(a) = a2 (1�H2a2). The
classically allowed region is a � H�1. The solution to this equation is a linear
combination of Airy functions Ai[z(a)] and Bi[z(a)], where z(a) = (3�2a20=4G)

2=3(1�
a2=a20).

Plot sample wave functions on this graph. The wave function one obtains
is set by the boundary conditions that one sets for the universe which in turn set
the coe�cients for the Airy functions Ai[z(a)] and Bi[z(a)]. The Hartle-Hawking,
Vilenkin, and Linde wavefunctions are

	HH / Ai[z(a)]
	V / Ai[z(a)]Ai[z(0)]+ iBi[z(a)]Bi[z(0)]

	L / 1

2
(Ai[z(a)]+Bi[z(a)])

	yours / c1Ai[z(a)]+ c2Bi[z(a)] (26)

Chose your boundary condition and set the complex coe�cients c1 and c2 to match
your boundary conditions and show your results on the plot of the potential along
with the wave functions of Hartle-Hawking, Vilenkin, and Linde. Hint: It is good to

have your solution contain the expanding universe in the classical region.
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Figure 1: Potential for DeSitter Space Universe
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