Physics 139 Relativity Problem Set 8 Due Week March 20, 2003

G. F. SMOOT Department of Physics, University of California, Berkeley, USA 94720

1 Rindler Space

Label a representive line on this figure of a Rindler space (space for uniform acceleration) for each of these types:

- (a) past horizon line and future horizon line
- (b) t = 0 line
- (c) line of constant ξ ("height") a fixed coordinate in "elevator" frame.

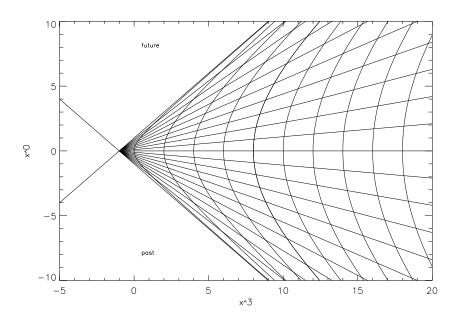


Figure 1: Rindler Space with sample critical lines

Work problems with c=100 m/s and actual value of $c=3\times10^8$ m/s.

2 Uniformly Accelerated Clocks

A source with a "proper" frequency f_o is placed at a position x_o along the vertical axis. Derive a formula for the frequency shift Δf determined by an observer located at the origin.

- (a) A light source emits blue light at $f_1 = 6.32 \times 10^{14}$ Hz at a distance of 100 m below the origin. What will be the frequency observed by an origin observer?
- (b) The observer moves to a new position x_1 above the origin. At what value of x_1 will the observer see a frequency $f_1 = 4.65 \times 10^{14}$ Hz?
- (c) Using the position found in part (b) as an origin, find the new value of g_1 . See if your formula works with this new gravitational constant over the distance $x_1 + 100$ between the source and the new origin of the observer.

3 A Metric where Covariant and Contravariant Matter

- (a) Prove that the 2-dimensional metric space described by $ds^2 = dv^2 v^2 du^2$ is just the flat 2-dimensional Minkowski (pseudo-Euclidean) space usually described by $ds^2 = dx^2 dt^2$. Do this by finding the coordinate transformations x(v, u) and t(v, u) which take the first metric into the second.
- (b) For an unaccelerated particle, show that the component of the momentum P_u is constant, but P_v is not. Note, however, P_vP^v is constant.

4 Moving Clock in a Uniformly Accelerating Frame

A clock at x=200 m above the origin has a coordinate velocity $\dot{x}=50$ m/s, $\dot{y}=30$ m/s, $\dot{z}=20$ m/s.

- (a) At what rate does the clock tick relative to the origin clock?
- (b) Find the covariant and contravariant four-velocity of the clock.

5 Coordinate and Local Acceleration

An object is dropped at rest at the origin.

- (a) What will be its coordinate velocity and acceleration when it reaches a point 800 m below the origin?
- (b) What will be the velocity and acceleration as measured by a local observer at that point?
- (c) Show that energy is conserved in this descent.