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3 Properties of

Spatial and Temporal Measurements { From

the Postulates

3.1 Comparison of Meter Sticks and Clocks in Relative

Motion

3.1.1 Meter Sticks ? Motion

`0`

? ?

66

O0(S0)O(S)

By the �rst postulate the lengths ` = `0, since, if one were shorter , it might
be absolutely at rest and the other moving with respect to it, or at least they would
be distinguishable.

3.1.2 Clock Rates

Consider a clock made by counting re
ections between two parallel mirrors moving
perpendicularly.
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For frame O:

�
c�t

2

�2

= `2 +

�
v�t

2

�2

(�t)2
�
c2 � v2

�
= 4`2

�t =
2`p
c2 � v2

=
2`

c

1q
1 � (v=c)2

(1)

For frame O0:

�t0 =
2`0

c
=

2`

c
(2)

So one has

�t =
�t0q

1� (v=c)2
(3)

This is called Time Dilation. The time for frame O is greater than the time for O0,
so that an observer in frame O claims that frame O0's clocks are running more slowly.

This is termed Time dilation of a moving clock.
Comments:

(1) In Ether theory

�t = �t0 =
2`

c
q
1 � (v=c)2

Since both observers would agree on the actual path length through the Ether.
Same for Ether Theory with Lorentz contraction since there is no contraction

perpendicular to ~v.
(2) Emission Theory gives

�t = �t0 =
2`

c

(3) What does O0 say about the clocks in frame S?
O0 says clocks in S run slow. This is necessary but the �rst postulate; Do the

experiment the other way and remember that the systems cannot be distinguishable.
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(4) Is all this consistent?
Observer O uses two clocks, O0 uses one! O0 blames O's \wrong result" on

O's clocks not being properly synchronized. (The second clock is set later.) Thus
the systems are not symmetrical and identical. O0 agrees with O as to all the clock
readings but explains this di�erently.
(5) Can the rate of a moving clock be tested experimentally?

Yes. The earliest good work was by Ives and Stilwell using \canal rays". (1928)
Doppler e�ect makes the result unless the observation is made perpendicular

to ~v or one uses the average of parallel and anti-parallel light. The latter approach is
better. They used Dempster's velocity selector.

� =
�0
�
1 � v

c

�
r
1 �

�
v
c

�2 (4)

The upper term represents the Doppler e�ect and the lower the time dilation.
Other early measurements include: Nereson and Rossi published in Physical

Review 64, 199 (1943) and the direct test with mesons by Neher and Stever published
in Physical Review 58, 756 (1940).

The height was chosen so that matter traversed was the same di�erence in rate
so decay of cosmic ray mesons in 12,000 feet.
(6) The nature of clocks: Clocks may be mechanical, electrical, chemical, radioactive,
biological, atomic, nuclear, etc.: All clocks obey the same law of time dilation.

(7) How can one compare clocks in two di�erent systems?

&%
'$

� >��
��

��
��

&%
'$

Example, put one clock on a rotating wheel with velocity v and compare after

each revolution. The moving clock runs slow by the 
 = 1=
q
1� v2=c2 factor.

3.1.3 Meter Sticks jj Motion
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S0 sends light signal to mirror and back, with time �t0 in distance 2`0.
�t0 = 2`0=c by second postulate.

By time dilation which is just established:

�t =
�t0q

1 � v2=c2
=

2`0

c
q
1� v2=c2

(5)

But from the second postulate directly

�t =
ae+ ed

c

ae = ` + be = `+ ae
v

c

ae(1� v

c
) = `

ae =
`

1 � v
c

de = `+ be� de = ` + ae
v

c
� [ae+ de]

v

c
= ` � de

v

c
;

de(1 +
v

c
) = `

de =
`

1 + v
c

:

�t =
`

c

"
1

1 � v
c

+
1

1 + v
c

#

�t =
2`

c (1� v2=c2)

But

�t =
2`0

c
q
1� v2=c2

;

so the equation

` = `0
q
1 � v2=c2 (6)

give the Lorentz-Fitzgerald contraction.
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3.1.4 Setting of Clocks

C0

2
C01

C

>��
��

S

v -

S0 >> ��
��

��
��

S notes the clock readion on C and on C0

1 when C0

1 passes C and the readings
on C and C0

2 when C0

2 passes C. By the �rst postulate, O and O0 agree on jvj.

t02 � t01 =
`0

v
; t2 � t1 =

`

v

with the same v.
But ` = `0

q
1� v2=c2 (just established) and

t2 � t1 =
t02 +�t02 � t01q

1� v2=c2

where the time �t02 was just established previously in which �t02 is the correction
made by O to the setting by O0 of clock C0

2 in order to get clock synchronization in
frame S0. (�t02 turns out to be negative; O �nds t02 to be ahead, and must subtract
j�t02j from its reading.)

t02 +�t02 � t01q
1 � v2=c2

=
`

v
=
`0

v

q
1 � v2=c2

t02 � t01q
1 � v2=c2

+
�t02q

1 � v2=c2
=
`0

v

q
1� v2=c2

=
`0=vq

1 � v2=c2
+

�t02q
1 � v2=c2

=
`0

v

q
1� v2=c2

Solving for �t02 yields

�t02 =
`0

v

"�q
1� v2=c2

�2

� 1

#
= �`

0v

c2
:

O says clock C0

2 is set ahead by `0v=c2 in the time units used by O0.
The clock behind in space is ahead in time.

Now by the Second Postulate A new experiment:
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S0 sends a beam of light from 1 to 2 and times how long it takes.

t02 � t01 = `0=c

Waht does O calculate?

t2 � t1 =
t02 + �t02 � t01q
1� v2=c2

remembering that time dilation is previously established. There is a new �t02 for this
experiment, the correction calculated by O for C 0

2.

t2 � t1 =
`

c+ v
=
`0
q
1� v2=c2

c+ v

making use of the established Lorentz contraction.

t = `
c+v

ct+ vt = `

` -�

photon�

ctvt

- � ��
��

��
��

t02 +�t02 � t01q
1� v2=c2

==
`0
q
1� v2=c2

c+ v

�t02 =
`0
�q

1 � v2=c2
�2

c+ v
� (t02 � t01)

=
`0
�q

1� v2=c2
�2

c+ v
� `0

c
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= `0
"
1� v2=c2

c+ v
� 1

c

#
= `0

c� v2=c2 � c� v

c(c+ v)

= �`
0v(1 + v=c)

c2(1 + v=c)
= �`

0v

c2

Which is exactly the same as deduced from the First Postulate. O says \Clock behind
in space is ahead in time."

3.1.5 Operational Explanation of Perceived Synchronization Defect

1) O0 synchronizes two identiacal clocks at the same place.
2) He carries one slowly to the rear; or both slowly away from each other and

they stay synchronized as he sees it.
3) O says thaat the rear clock moves ahead in time because it runs fater while

being moved back to its �nal position.
Rate of front clock � r01 and rate of rear clock � r02 as seen by O.

r01 = ro

q
1 � v2=c2

r02 = ro

q
1� (v ��v)2=c2

�r0 ' rof
h
1� (v � �v)2=(2c)

i
�
h
1� v2=(2c2)

i
g

= ro
h
1� v2=c2 + v�v=c2 � 1 + v2=c2

i

�r0 = ro
v�v

c2

Distance moved is `0 = �V�t0 where �t0 is the time to move the clock.

�r0 = ro
v`0

c2�t0

�r0�t0 is he synchronization \error" which is �t0 = `0f=c2. The rear clock is ahead in
time.

CONCLUSION One must abandon the notion of simultaneity of time for
observers in relative motion.

4 The Lorentz Transformation

The Lorentz transformations are demanded and supported by experimental
observations. The Lorentz transformation equations can readily be derived from
length contraction and time dilation after taking a short detour to dicuss clock
synchronization.
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Consider two frames of reference: S, the laboratory frame and S0 a frame of
reference moving vith velocity ~v in the x̂ direction as shown in the following �gure.

x0x
(t0,x0,y0,z0)
(t, x, y, z)eventv--

�
�
�	

�
�
�	

6
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S
x

y

O

6

-
S0

x0

y0

O0

-
v

Arrange things so that at t = 0 and t0 = 0 that the two origins O and O0

coincide.
Consider each reference system to a an actual lattice of meter sticks and clocks,

e.g. each reference system is �lled with these space and time measuring devices at
every point.

Get clocks in S to agree. Identical clocks set by sending out a light pulse from
origin O and also from the midpoint between any two clocks. Check times, re
ect
back to midpoint, if pulses arive together, then clocks agree.

System S0 dos the same with his clocks.
We have for the space-time event in the �gure above

x = vt+ x0 �
q
1 � v2=c2 (7)

where the second term takes into account length contraction of a moving frame.
We can use our arguments about the transverse directions to show that they are
unchanged and then have the spatial Lorentz transformations:

x0 =
1q

1� v2=c2
(x� vt)

y0 = y
z0 = z

t0 = t
q
1 � v2=c2 + sychronization e�ect (8)

4.1 Synchronizing Clocks in Moving Frame

Our approach to get our system of reference made of a grid of meter sticks and
synchronized clocks requires that we synchronized the clocks. An approach to
synchronizing the clocks is: bring the clock together, match their readings, then
move into place. Move them slowly and gently so as not to disturb their operation.

Consider the simple case of two clocks brought together at the origin of the
moving system S0. When they are together, from the laboratory frame S both

clocks read same time and are going slow by a factor
q
1� (v=c)2 as a result of

8



time dilation. Now very slowly and genterly move one clock back (in negative x0-
direction; toward the laboratory system origin) a distance ` in elapsed time ` = �v � .

The clock at the origin has its rae slo by
q
1 � v2=c2 relative to the laboratory

frame. Clock moving back in negative x0-direction has its rate slowed by the factorq
1� (v � �v)2=c2

fA =
q
1� v2=c2fo fB =

q
1� (v � �v)2=c2fo (9)

The di�erence in the clocks' rates is

fA � fB = fo

�q
1� v2=c2 �

q
1� (v � �v)2=c2

�

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� (v � �v)2

c2

!1=2
3
5

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� v2

c2
+

2�vv

c2
� �v2

c2
)

!1=2
3
5

= �fa
�v v=c2

1 � v2=c2
= �fo

�v v=c2q
1� v2=c2

(10)

If it takes a time � = `o=�v to separate the clocks, the time di�erence between
them is

�t =
fA � fB

fA
� =

�q
1 � v2=c2 �

q
1 � (v � �v)2=c2

�
�

= � �v v=c2q
1 � v2=c2

� `o

�v
= � `0 v=c

2q
1 � v2=c2

= �`0v=c2 (11)

Note that the speed with which the clock moves drops out and the change in reading
is proportional only to the distance displaced and the velocity of the moving system.

Clocks get out of synchronization (phase) by an amount proportional to their
separation `o and v. If brought back together, the clocks will go into synchronization.
The clock that is farther behind in space is further ahead in time.

Note that in the frame S0 the di�erence in rate of time kept between the clock
at the origin and the one being moved back to its place is second order in v=c rather
than �rst order:

f 0B =
f 0Aq

1 � (�v)2=c2
' f 0A �

 
1� 1

2

v2

c2

!

So that by moving with a very, very slow velocity the integrated e�ect in the S0 frame
can be made arbitrarily small while the e�ect as observed in the S frame is always
�`0v=c2 independent of �v. That is because the e�ect in frame S is �rst order in �v=c
and integrated over time equals the displacement.
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The �nal Lorentz transformations are:

t0 = t
q
1� v2=c2 � x0v

c2
= t

q
1 � v2=c2 � v2

c2
1q

1 � v2=c2
(x� vt)

=
1q

1 � v2=c2

�
t� vx

c2

�
= 


�
t� vx

c2

�
(12)

Notice for v << c get Galilean tranforms and there is also a symmetry between
the transformation equations.

t0 = 
(t� vx=c2) t = 
(t0 + vx0=c2)
x0 = 
(x� vt) x = 
(x0 + vt0)

y0 = y y = y0

z0 = z z = z0

(13)

4.1.1 Remarks on Lorentz Transformation

History: Lorentz transformation was derived by Lorentz before Einstiein's work.
Lorentz obtained them by considering invariance of Maxwell's Equations.

Signi�cance: They de�ne the mathematical speci�cation required to discus
a kinematic occurrence { a sequence of space-time events.

Agreement with First Postulate: If one does the inversion, one obtains
the same equations. Try replacing v by �v.

.....
Agreement with Second Postulate:

In S, light is described by

 
dx

dt

!2

+

 
dy

dt

!2

+

 
dz

dt

!2

= c2 (14)

This is equivalent to
dx2 + dy2 + dz2 � c2dt2 = 0 (15)

Substitute in the Lorentz transformations

(dx0 + vdt0)2�q
1 � v2=c2

�2 + dy0
2
+ dz0

2 � c2

�
dt0 + v

c
dx0
�2

�q
1 � v2=c2

�2

=
1�q

1 � v2=c2
�2
"
dx0

2
+ 2vdx0dt0 + v2dt0

2 � v2

c2
dx0

2 � 2vdx0dt0 � c2dt0
2

#
+ dy0

2
+ dz0

2

= dx0
2
+ dy0

2
+ dz0

2 � c2dt0
2
= 0

Group Property of Lorentz Transformations in a Line
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Idenity exists: v = 0
Inverse exists: v!�v
Transitive: S ! S0 ! S00 � S ! S00

Exhibit as an Exercise?
It is true that all Lorentz Transformations also form a group.

4.2 Composition of Velocities

In Galilean relativity one simply adds velocities when changing frames of reference.
Velocity composition is slightly more complicated in Special Relativity. We can
readily derive the velocity compostion formulae from the Lorentz transformation.

dt =
dt0 + v

c2
dx0q

1� v2=c2
;

dt

dt0
=

1 + v
c2

dx0

dt0q
1 � v2=c2

=
1 + vux=c

2q
1� v2=c2

dt

dt0
=

1 + u0x
v
c2q

1 � v2=c2

ux =
dx

dt
=

dx0 + vdt0

dt0
q
1 � v2=c2

dt0

dt
=

dx0

dt0
+ vq

1� v2=c2

dt0

dt

ux =
u0x + vq
1 � v2=c2

q
1 � v2=c2

1 + u0

x
v

c2

ux =
u0x + v

1 + u0

xv

c2

(16)

uy =
dy

dt
=
dy0

dt
=
dy0

dt0
dt0

dt

uy = u0y

q
1 � v2=c2

1 + u0

xv

c2

(17)

uz = u0z

q
1 � v2=c2

1 + u0

xv

c2

(18)

These three equations are the Einstein Velocity Addition Law.
Velocities do not add like vectors!
There are other important quantities for which transformation equations are

needed. That is to say that they do not transform like vectors. Can work them out
as exercises, e.g. transformation of acceleration and force. We will discuss these more
later.
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ax �
dux

dt
; a0x �

du0x
dt0

; etc:

Answers:

ax =

�
1� v2

c2

�3=2
h
1 + u0

xv

c2

i3 a0x (19)

ay =

�
1� v2

c2

�
h
1 +

u0

x
v

c2

i2a0y �
u0

yv

c2

�
1� v2

c2

�
h
1 +

u0

x
v

c2

i3 a0x (20)

az =

�
1 � v2

c2

�
h
1 + u0

xv

c2

i2a0z �
u0

z
v

c2

�
1� v2

c2

�
h
1 + u0

xv

c2

i3 a0x (21)

Note as hint that

q
1 � u2=c2 =

q
1 � (u0)2=c2

q
1� v2=c2

1 + u0

xv

c2

and
u2 = u2x + u2y + u2z

4.2.1 Transformation of the Lorentz Factor 


Now that we have the composition of velocities or Lorentz transformation of velocities,

we can �nd the transformation of the Lorentz Factor 
 and/or
q
1 � v2=c2.

First consider
q
1 � u2=c2 where u is the speed of the particle in frame S and

u0 is the speed of the particle in frame S0 and the frames have relative velocity V .

u2 = u2x + u2y + u2z =

 
u0x + V

1 + u0xV=c
2

!2

+

0
@u0y

q
1� V 2=c2

1 + u0xV=c
2

1
A

2

+

0
@u0z

q
1� V 2=c2

1 + u0xV=c
2

1
A

2

so that

1 � u2

c2
= 1 �

(u0x + V )2 +
�
u02y + u02z

�
(1� V 2=c2)

c2 (1 + u0xV=c
2)2

=
c2 + 2u0xV + u02x V

2=c2 � u02x � 2u0xV � V 2 �
�
u02y + u02z

�
(1 � V 2=c2)

c2 (1 + u0xV=c
2)2

=
c2 � V 2 �

�
u02x + u02y + u02z

�
(1� V 2=c2)

c2 (1 + u0xV=c
2)2
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=
(1� V 2=c2) (1� u02)

(1 + u0xV=c
2)

2

Taking the square root yields

q
1 � u2=c2 =

q
1 � V 2=c2

q
1� u02=c2

1 + u0xV=c
2

(22)

And since 
 = 1=
q
1 � u2=c2 we have


p =
�
1 + u0xV=c

2
�

f


0

p (23)

where 
p and 

0

p are the Lorentz 
 of the particle in the S and S0 frames, respectively,

and 
f = 1=
q
1� V 2=c2 is the Lorentz 
 of one frame relative to the other.

We will use these transformations again later.

4.2.2 Velocity of Light as Maximum

The velocity addition law indicates that the velocity of light is the maximum velocity
attainable by a material object. (Hence the origin of the t-shirt with Einstein in
policeman's cap saying Speed Limit: 186,000 miles/sec! It's not just a good idea; it's
the law.)

The velocity addition law for motion in the x-direction is

ux =
u0x + v

1 + u0xv=c
2

If v = u0x = c=2,

ux =
c=2 + c=2

1 + 1=4
=

4

5
:

If v = u0x = c,

ux =
c+ c

1 + 1
= c!!

That is adding together two velocities that are very near the speed of light only gets
one closer to the speed of light; one cannot keep adding velocities and exceed the
speed of light.
Exercise: Show that if one has a particle moving at �c slower than c (u0 = (1� �)c in
the fram S0 moving at speed v = (1� �)c just less than the speed of light in the same
direction, the velocity observed in frame S is just a little less than c.
Solution: Once can use the compostion of velocities formula

u =
v + u0x

1 + uxv=c2
=

(1� �+ 1� �)c

1 + (1� �)(1� �)
=

2 � �� �

2� �� � + ��
c =

c

1 + ��
2����

' (1 � ��=2)c
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4.2.3 Velocity of a Causal Impulse

~u
Causal Impulse

-

E�ectCause
x2x1

~v -

S0S

vv

In Frame S: (From the point of view of observer O in frame S)

�t = t2 � t1 =
x2 � x1

u
; u =

x2 � x1

t2 � t1

In Frame S0: (From the point of view of observer O0 in frame S0)

�t0 = t02 � t01 =
1q

1 � v2=c2

�
t2 �

x2v

c2
� t1 +

x1v

c2

�

=
t2 � t1q
1 � v2=c2

�
1� v

c2

�
x2 � x1

t2 � t1

��
=

1 � uv=c2q
1� v2=c2

�t:

Now, if the causal impulse velocity u is greater than c (the speed of light), one
can choose v to make �t0 negative! E�ect precedes cause! This is impossible, if we
are to keep causality, so the maximum velocity of a causal impulse is c.

(This is of course the group velocity - with which signals can be sent. Phase
velocities may have any value!)

4.2.4 Velocity of Light in a Moving Medium

S S0 moves with medium

medium ?6

Light
- ~v-

u0 =
c

n
; n = index of refraction (24)

u =
u0 + v

1 + u0v=c2
=

c=n + v

1 + cv=(nc2)
'
�
c

n
+ v

��
1� v

nc

�
:

u ' c

n
+ v � c

n2

v

c
� v2

nc
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u

c
' 1

n
+
v

c
� v

n2c
� 1

n

v2

c2
' 1

n
+

�
1 � 1

n2

�
v

c

u =
c

n
+

�
1 � 1

n2

�
v (25)

This is exactly Fresnel's drag coe�cient from 1818.
Note that the e�ect is a little more complicated when disersion (index of

refraction n depends on wavelength/frequency) is taken into account because of the
Doppler shift (see next section). The speed cm of light in a moving medium is equal
to

cm =
c

n
+ kvm (26)

where vm is the speed of the medium and

k = 1� 1

n(�)2
� �

n(�)

dn(�)

d�

4.2.5 Doppler E�ect

JJ



hh
h

-

�u
-

z

A stationary observer sees light from a distant source, e.g. a star, The observer
sees the light with period P

P = Po
(1� u=c)q
1� u2=c2

(27)

And wavelength �:

� = �o
(1� u=c)q
1� u2=c2

: (28)

One approach to this result is

� = �o
(1� u=c)q

(1� u=c)(1 + u=c)
=

vuut1 + u=c

1� u=c

Remember that �f = c or �=P = c.
For the Ether Theory:

� = �of (1� u=c) for moving source
1= (1 + u=c) for moving observer

Where u is positive for approach.
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The Special Relativity result is the geometric mean of these:

� = �0

vuut1� u=c

1 + u=c
(29)

4.2.6 Aberration of Starlight

First consider light coming from a star perpendicular to the direction of motion of
the telescope.
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Then consider more general directions.
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ux = �ccos� u0x = �ccos�0
uy = �csin� u0y = �csin�0

Now apply Einstein velocity addition:

u0x =
ux � v

1� uxv=c2

cos�0 =
cos� + v=c

1 + v
c
cos�
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v0y = uy

q
1 � v2=c2

1 � uxv=c2

sin�0 = sin�

q
1� v2=c2

1 + v
c
cos�

It is easy to check that sin2�0 + cos2�0 = 1.
In the simple case � = �=2 so cos� = 0,

cos�0 =
v

c

which is the Bradley result.
In the general case, use the trigometric identity

tan
�

2
=

sin�

1 + cos�

tan
�0

2
=

sin�0

1 + cos�0
= sin�

q
1� v2=c2�

1 + v
c
cos�

� h
1 + cos�+v=c

1+(v=c)cos�

i

tan
�0

2
=

vuut1� v=c

1 + v=c
tan

�

2
(30)

For outgoing rays, c!�c.

5 Einstein's Special Relativity

It is straight-forward to show that from Einstein's postulates one also obtains the
Lorentz transformations.
Two Postulates
1. No physical experiment (without reference to outside) can determine the absolute
speed of the frame of reference.
2. The speed of light is independent of the speed of the source (or observer).

Consider an expanding sphere of light

c2t2 � x2 + y2 + z2 = c2t02 � x02 � y02 � z02

viewed by two inertial frames of reference (S and S0) by observers O and O0 respectively
with origins coinciding { at t = t02 = 0, x = x02 = 0, y = y02 = 0, z = z02 = 0.

By simple argument one can see that lengths transverse to the direction of
motion must be unchanged only x and t will be modi�ed. One argument is the one
made before about considering two identical cyclinders aligned with each other and
their axes parallel to the direction of motion ~v. If the dimension perpendicular to
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the direction of motion changes, then one cyclinder will grow or shrink relative to the
other and could pass through the other. If one then swithes to the other frame, the
opposite should happen or one can determine the absolute velocity. One would be
able to tell which one went inside and which outside.

Or consider the earlier discussion of two meter sticks aligned perpendicular to
the direction of motion. When the two meter sticks pass by each other one can use
them to measure each other and tell which is longer and thus establish the absolute
velocity.

Thus by symmetry and logic using postulate (1) we have

y = y0; z = z0

so that the equation of expanding light sphere reduces to

c2t2 = c2t02 � x02

If we accept the second postulate and assume coordinate transformations are
linear and homogeneous we have

x0 = Ax+Bt

t0 = Cx+Dt

Now consider special cases:
(1) O0 origin has x0 = 0, which implies x = �B

A
t. Since velocity of O0 relative to O is

v, so that v = �B
A
which yields B = �Av.

(2) The origin of O has x = 0, which gives x0 = Bt, t0 = Dt implying x0 = B
D
t or

B = �Dv.
Combining (1) and (2) yields D = A. The linear transformation simpli�es to

x0 = A (x� vt)

t0 = Cx+At

(3) Putting this back into the expanding light sphere formula

c2t2 = c2t02 � x02c2 [Cx+At]2 � [A (x� vt)]2

= c2C2x2 + 2c2CAxt+ c2A2t2 �A2x2 + 2A2vx�A2c2t2

= A2
�
1� v2=c2

�
c2t2 + 2c2A

�
C +

v

c2
A

�
xt�

�
A2 � c2C2

�
x2

We can conclude that A2 (1� v2=c2) = 1 or A = 1=
q
1 � v2=c2 and A2� c2C2 = 0 so

that

C = �vA=c2 = � v

c2
1q

1 � v2=c2
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and thus

A2 � c2C2 =
1

1 � v2=c2
� v2

c2
1

1� v2=c2
= 1

This gives us the Lorentz transformation

t0 = 
(t� vx=c2) t = 
(t0 + vx0=c2)
x0 = 
(x� vt) x = 
(x0 + vt0)

y0 = y y = y0

z0 = z z = z0

(31)

Thus we have the indentical Lorentz transformations from simple logical
deduction. We can construct the full theory of Special Relativity by using these
postulates and a series of thought (\gendanken") experimental. This approach is quite
elegant and intellectually pleasing and makes a very nice and tight exposition and
thus coherent little books. However, here we are emphasizing both the experimental
basis and applications and the importance of understanding relativity frommore than
one point of view.

In the next section we rederive the Lorentz transformations using the
Minkowski geometrical view and the Poincare relativity principle (Einstein's postulate
(1) but with a wider implication).

6 Minkowski Space-Time

The Minkowski (1908-1909) geometrical interpretation of Special Relativity is quite
a technically powerful approach. The primary step is to assume that our world is
described by a 3+1 dimension space-time continuum. There are four dimensions
and space is Euclidean but the addition of time to be the fourth dimension makes
space pseudo-Euclidean because the metric which de�nes distance has a di�erent sign
between time and space: There are two possible signatures for the signs: �;�;�;�
yielding the two possible metric equations:
The proper time convention:

(cd� )2 = (cdt)2 � (dx)2 � (dy)2 � (dz)2 (32)

The proper distance convention:

(ds)2 = � (cdt)2 + (dx)2 + (dy)2 + (dz)2 (33)

For most of this course and notes I use the proper time (�rst) convention since
it has a postive value for the physical objects we consider.

Note that such a space is intrinsically di�erent from a 4-D space with signature
+;+;+;+. It is conceptually confusing to smooth this over by replacing ct by ict or
just i� = x4. Even if this is done for the stated reason that most people know the
sine and cosine better than sinh and cosh.
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6.1 Comments on 4-D Geometry for S.R.

The Minkowski metric and 4-D geometry makes quite an inpact on how one can
approach problems in Special Relativity.
Importance
1) Assists in developing the needed space-time intuitions
2) Avoids always singling out a particular axis (x k vrelative).
3) 4-D language is suggestive and seldom misleading. e.g. ict is avoided! and it is
more likely to account for all coordinates in appropriate frame.
4) 4-D vectors and invariants are powerful tools.
5) Is an essential approach of geometrical General Relativity.

With 4 axes one needs 4 numbers to specify an \event" in space-time. But
directions are not equivalent. A meter stick can be rotated to measure y or z instead
of x, but it cannot be rotated into a clock.

6.2 Invariant Interval

The (Minkowski) geometry of space-time is constructed so that the interval: dx2 +
dy2 + dz2 � c2dt2 is invariant under a Lorentz transformation. And the signature is
invariant under all real transformations of coordinates.

In more general form the signature is written as a bilinear transfomation or a
matrix:

(ds)2 =
X
��

��� (dx�) (dx�) (34)

where the Minkowski metric term ��� can be expressly written as

��� =

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775 (35)

Because the determinant of the signature is not equal to one but is -1, there
are three di�erent kinds of intervals:
(1) Space-like: Two space-time events separated such that

�x2 +�y2 +�z2>c2�t2

�s2>0 �� 2<0 (36)

One can always �nd a Lorentz transformation to proper coordinates in which �t2 = 0.
That means that one can �nd an inertial coordinate system in which two events which
have a space-like interval happen simultaneously.
(2) Time-like: In this case events are separated such that �� 2>0 (or �s2<0) because
c2�t2>�x2 + �y2 + �z2. One can always �nd a Lorentz transformation to proper
coordinates in which �x2 +�y2 +�z2 = 0
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(3) Singular: In this case events separated such that �s2 = �� 2 = 0 These events lie
on the light cone, such as a light ray in vacuum.

The result is that space-liek intervals can always be measured with a meter
stick and time-like with a clock.

6.3 What leaves �s
2 invariant?

(1) Moving origin in space. (translation in space) E.g.

x0 = x+ xo
y0 = y

z0 = z
t0 = t (37)

(2) Re-setting zero time (translation in time) x, y, z remain the same and t0 = t+ to.
(3) Rotation of spatial axes, E.g.

x0 = xcos� + ysin�

y0 = �xsin�+ ycos�
z0 = z
t0 = t (38)

(4) Lorentz Transformation:

x0 = 
 (x� vt)
y0 = y
z0 = z
t0 = 


�
t� xv=c2

�
(39)

Which is equivalent to

x0 = xcosh(�) + ctsinh(�)
y0 = y
z0 = z
ct0 = �xsinh(�) + ctcosh(�) (40)

where cosh(�) = 
 � 1=
q
1� v2=c2.

This is a Lorentz rotation of axes. It can be considerred an imaginary rotation
in the x� t plane. Remember the hyperbolic trigonetry idenity/de�ntion.

cosh2(�)� sinh2(�) = 1

Consider cosh(�) = cosh(i�); isinh(�) = sin(i�) which gives

x0 = xcos(i�) + ictsinh(�)
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y0 = y
z0 = z
ict0 = �xsin(i�) + ictcos(i�) (41)

Consider a space-like interval

jdxj>jcdtj

Then dx0 = 
 (dx� vdt) ; cdt0 = 

�
cdt� v

c
dx
�
and one can always �nd a value of

v=c with jv=cj<1 for which cdt0 = 0. Its magnitude is jv=cj = jcdt=dxj<1. A similar
argument works for time-like intervals.

In the following picture, OQ is time-like, OS is space-like, and OR is singular.
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By a Lorentz transformation we may:
(1) Move Q to the t0 axis.
or
(2) Move S to the x0 axis.

But R will always be on a line of slope 1 in any S0

Q may be on the particle's world line, then we may �nd a frame in which x0

stays zero, which is called the rest frame of the particle. In this frame clocks at reast

measure the particle's proper time, d� . In other frames dt = d�=
q
1 � v2=c2 = 
 d� .

OQ may be ameter stick. One can �nd S0 so that it lies on the x0 axis and x0 = 0.
Consider particles to be pieces of the stick. They are laid out in S0 to measure

proper length �. For other frames, `0 = �
q
1� v2=c2 = �=
. with the x direction of

v and stick on the x axis.
For particles not free, that is with forces on them, we have the

instantaneous rest frame.
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6.4 Derivation of Lorentz Transformations

The Lorentz transformations result automatically from the metric and the assumption
that in all inertial systems proper distances or times are invariants. That is any
observer in any inertial system will calculate the same proper distance between two
space-time events.

We start with two postulates:
(1) Poincare' Relativity: The Laws of Physics are the same in all inertial frames.
(2) Minkowski Geometry/Metric Space-time is a continuum in 3+1 dimensions
with metric

(cd� )2 = �(ds)2 = (cdt)2 � (dx)2 � (dy)2 � (dz)2

where � is the proper time and s is the proper distance. Proper time is invariant for
all intertial systems.

Immediately we get time dilation

(cd� )2 = (dt)2

2
4c2 �

 
dx

dt

!2

�
 
dy

dt

!2

�
 
dz

dt

!2
3
5

(d� )2 = (dt)2
"
1 � v2x

c2
�
v2y

c2
� v2z
c2

#
= (dt)2

"
1� v2

c2

#

d� = dt
q
1 � v2=c2

If proper time is invariant,the we can show Lorentz transformation is linear.

(c�� )2 = (c�t)2� (�x)2 � (�y)2 � (�z)2

= (�x0)2 � (�x1)2 � (�x2)2 � (�x3)2

the second equation de�nes a numbering system for coordinates. But this same sum
in the primed coordinate system must give the same proper time.

= (c�t0)2 � (�x0)2 � (�y0)2 � (�z0)2

The conversion from one coordinate system to another

dx0� =
X
�

@x0�
@xbeta

dx� �
@x0�
@xbeta

dx�

where the second right hand side de�nes the Einstein summation convention that a
repeated index (in this case �) mean summation on that index. The Greek symbol
index sums over four (4-D) going 0, 1, 2, 3 and Roman letters sum over three spatial
coordinates going 1, 2, 3.

c2d� 2 =
X
�

dx2� =
X
�

X
�

@x0�
@x�

@x0�
@x�

dx�dx�
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=
X
�

dx2� =
X
�

X
�

���dx�dx�

Therefore
@x0�
@x�

@x0�
@x�

= ���

implying if one takes the derivative: @
@x�

one �nds

@2x0�
@x�@x�

@x0�
@x�

+
@x0�
@x�

@2x0�
@x�@x�

= 0

Now one can then shift through the indicies: �! � ! � ! epsilon and get generically

@2x0

@x@x

@x0

@x
= 0

and the determinant of @x0=@x = �1 which implies

@2x0

@x@x
= 0

and
x0� = A� +

X
�

A��x�

Which shows that the coordinate (Lorentz transformation) must be linear to preserve
invariant the proper distance and time. Thus

dx0� =
X
�

A��x�

and X
�

A��A�� = ���

The solution to these equations is

A =

2
6664
cosh �sinh 0 0
�sinh cosh 0 0

0 0 1 0
0 0 0 1

3
7775

or equivalently

[ct0; x0; y0; z0; ] =

2
6664


 �
v=c 0 0
�
v=c 
 0 0

0 0 1 0
0 0 0 1

3
7775
0
BBB@
ct
x
y
z

1
CCCA
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