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1 Black Hole History Summary

1795: Laplace points out that Newtonian theories of gravitation and corpuscular light
implies that some stars might be so massive and compact that no light could escape.
1915: Einstein publishes theory of General Relativity.
1915 December: four months later Schwarzschild publishes �rst solution.
1931 Chandrasekhar publishes upper limit on White Dwarf Mass
1932: Chadwick discovers neutron; Landau gives generic argument on upper limit for
self-gravitating mass of degenerate baryons.
1935: A. Eddington understand the implication that Chandrasekhar (or Landau)
argument implies the ultimate gravitational collapse of massive stars.
1939: J. R. Oppenheimer and H. Snyder treat the collapse of homogeneous sphere
and show it gets cut o� from communication with the rest of the Universe.
1968: John Wheeler coins the name Black Hole.
1965: Penrose and 1973: Penrose and Hawking theorems on gravitational collapse.

1.1 The End State of Stars

(a) Ordinary stars are self-gravitating and therefore must have hot interiors to sustain
the thermal pressure that resists the inward pull of gravity.
(b) Space, outside of stars, is dark and cold. Thus heat 
ows continuously outward.
(Stars shine at night!)
(c) As long as a star behaves as a classical gas, there is no true thermodynamic
equilibrium. A star will continue to lose heat to the Universe. Thus a star will
contract and get hotter and hotter internally gaining heat from the gravitational
contraction.

It is a never ending struggle against gravity. The second law of
thermodynamics, nuclear energy sources can provide only temporary respite. When
they run out a star inevitably faces death, either convulsive, e.g. as a supernova or a
lingering slide towards collapsed state.
(d) What endings are possible:

(i) Nothing
(ii) White Dwarf
(iii) Neutron Star
(iv) Black Hole
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2 Schwarzschild Metric

ds2 =

�
1� 2GM

c2r

�
c2dt2 �

�
1� 2GM

c2r

��1
dr2 + r2(d�2 + sin2�d�2) (1)

The SchwarzschildMetric may be derived by assuming that the metric depends
only on the radius for a static, spherically-symmetric mass. This means that when
written in the form

ds2 = e�dt2 � e�dr2 + r2(d�2 + sin2�d�2);

the metric can depend only upon the coordinate r. The Einstein equations imply
that �+ � = 0 and that e� = 1 � 2GM=c2r exterior to the spherical mass. (Note we
are using c = 1 for these equations. Below, c is included when it is appropriate, i.e.
when calculating numbers.) One could use the same Einstein equations to solve for
the metric interior to the mass. However, the relativistic analog of the Newtonian
theorem that says for the interior of a spherical shell, the potential is constant. This
means that the metric at any location can be found by using the interior mass, i.e.
g00 = e� = 1�2GM(r)=c2r where the interior mass is the integral of the stress-energy
tensor, T 0

0 ,

M(r) =
Z r

o
T 0
0 4�R

2dR:

This matches to the Schwarzschild metric if M is the total integrated M(r) to the
surface of the mass.

Make the same assumption as Einstein|that the energy density consists of
only a uniform distribution of mass, �, and a cosmological constant energy density,
�=8�Gc2. Find the interior solution for the metric. What is the metric for the region
outside of the mass, total value M , if the cosmological energy density continues?
Note that this metric does not become asymptotically 
at as r!1. However, as we
discussed in class, �=c2 � 10�58 cm�2, is very small, so there is a range of distances

cp
�
>> r >>

GM

c2

in which the metric is nearly 
at.
In the weak �eld limit g00 �= 1 + 2�=c2. What is the e�ective potential � for

this case? What is the force as a function of distance? What sign does it have relative
to gravity? This is why the cosmological constant is sometimes referred to as a force
that increases with distance.

Consider a cluster of galaxies extending as far as 10 Mpc (10 million parsecs).
How big could the cosmological constant correction be? If there are about 2000
galaxies in the cluster with typical masses on the scale of 1011M�, then what is its
ratio relative to Newtonian gravity?
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3 Maximum Field

In class I gave an argument based upon the Uncertainty Principle as to the maximum
electric �eld that could exist in space. Reproduce that argument and provide a
formula for the electric �eld and �nd its value in volts per cm.

4 Electrostatics: Reissner-N�ordstrom Metric

An electrically charged mass will be surrounded by an electric �eld, which gives
rise to a nonzero energy-momentum tensor through-out space. To �nd the metric
requires solving the coupled Einstein and electromagnetic equations. For the
stationary spherically symmetric solution, the metric will have the general form of the
equations in Problem 3. However, the functions �(r) and �(r) will have a di�erent
interpretation. The electric �eld will be in the radial direction and the electromagnetic
�eld tensor, in spherical coordinates, is

F �� =

0
BBB@

0 �E(r) 0 0
E(r) 0 0 0
0 0 0 0
0 0 0 0

1
CCCA ;

where T 00 is the well-known energy density for an electromagnetic �eld, and T 0k is
the Poynting vector:

T 00 =
1

8�
(E2 +B

2) T 0k =
1

4�
(E�B)k:

The trace is zero: T �
� = 0. Setting c = 1 and using the same theorem for a spherically

symmetric energy system, the results for the metric and the electric �eld are:

ds2 =

 
1� 2GM

c2r
+
GQ2

r2

!
dt2 �

 
1� 2GM

c2r
+
GQ2

r2

!�1
dr2 + r2 d
2

and

E(r) =
Q

r2

Is it clear that Gauss's law is valid?
Clearly there is a radius of a charged particle at which the metric will go 
at.

What is that radius?
What is that radius for an electron? Express your answer in terms of the

classical radius of the electron. What is the �eld strength E there in volts per cm?
How does this compare to the maximum �eld strength computed in the previous
problem? Can you conclude that the real electric charge on the electron is actually
greater than e because of vacuum polarization e�ects? What if the electron was really
a point particle? Does the metric have a singularity if Q2 > GM2?

3



5 White Dwarfs

In 1932 Landau gave a rough derivation of the Chandrasekhar (1931) mass limit for
an electron-degenerate star. His argument applies to both white dwarf and neutron
stars.

Suppose that there are N fermions in a star of radius R, so that the number
density of fermions is n � N=R3. The volume per fermion is � 1=n since the Pauli
exclusion principle indicates that they cannot occupy the same phase space. Then, the
Heisenberg uncertainty principle implies the momentum of the fermions is � �hn1=3.
Thus, the Fermi energy of a gas particle in the relativistic regime is

EF�rel � �hn1=3c � �hcN1=3

R
:

For a non-relativistic particle E �= p2=2m, so that

EF�nonrel � �hn2=3c � �hcN2=3

R2

The gravitational energy per fermion is

EG � �
GMmb

R

where M = Nmb and we assume that most of the mass is in baryons (even if the
pressure comes from electrons). Equilibrium is achieved at a minimum of the total
energy, E = EF + EG. In the relativistic case

Erel �
�hcN1=3

R
� GMmb

R

Both terms scale as 1=R. When E is positive, decreasing R will increase both E and
EF; increasing r decreases both E and EF. If EF is decreased su�ciently the electrons
(or neutrons) will become non-relativistic and EF � �hcN2=3=R2. Thus eventually EG

will become larger than EF, and then E will be negative (eventually tending to zero
as R ! 1). There will therefore be a stable equilibrium at a �nite value of R. (A
stable equilibrium requires a minimum in the potential and the above argument is
that the potential is positive at small R, zero at R ! 1 and negative in between.
This implies that there is a minimum in the potential at a �nite value for R.)

If the sign of E is negative, E can be decreased without bound by decreasing
R and no equilibrium exists so that gravitational collapse will occur.

The maximum baryon number for equilibrium is therefore determined by
setting E = 0:

Nmax �
 

�hc

Gm2
b

!3=2

� 2� 1057
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Mmax � Nmaxmb � 1:5M�; M� = 1:989 � 1033 gm

With the exception of composition-dependent numerical factors, the maximummass
of a degenerate star thus depends only on fundamental constants. What would you
estimate for the ratio of the maximummasses of a star made of helium and one made
of hydrogen?

The equilibrium radius associated with masses M approaching Mmax is
determined by the onset of relativistic degeneracy:

EF � mc2

where m is the mass of the degenerate fermion (i.e. electrons or neutrons). The
formula for EF�rel gives an idea of the radius scale.

R � �h

mc

 
�hc

Gm2
b

!1=2

� 5� 108cm; m = me

� 3� 105cm; m = mb:

There are thus two distinct regimes of collapse: one for densities above white dwarf
values and another for densities above nuclear densities.

Though these arguments give the correct order of magnitude, note that the
rough radius for collapse of a neutron star is approximately equal to the Schwarzschild
radius. Thus we expect that the equilibrium value for the radius of such a neutron
star is not much greater than the Schwarzschild radius and a more careful treatment
will be necessary.

We expect a star to be in hydrostatic equilibrium; the inward pull of gravity
should be matched by the outward push of the pressure. For a spherically symmetric
distribution of matter, the mass interior to a radius r is

M(r) =
Z r

0

� 4�R2 dR; or
dM(r)

dr
= 4�r2�

(compare with the expression in Problem 3). To �nd the equation of hydrostatic
equilibrium, consider an in�nitesimal 
uid element lying between r and r + dr and
having area dA perpendicular to the radial direction. The gravitational attraction
betweenM(r) and the mass dm = � dAdr is GM(r)dm=r2. The net outward pressure
force on dm is �[P (r + dr) � P (r)]dA, so in equilibrium these are matched giving

�dP
dr

dr dA =
GM(r)

r2
dm

or
dP

dr
= �GM(r)�

r2
:
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These two equations can be combined to give the di�erential equation

1

r2
d

dr

 
r2

�

dP

dr

!
= �4�G�

This is useful, provided we know the equation of state (i.e., the relationship
between the pressure P and density �) for matter. For many gases this is simply

P = K�
 where K and 
 are constants:

This relation is true for a degenerate fermion gas. A volume V at pressure P has
a pressure energy PV . A degenerate fermion gas with N particles in volume V

has a number density n = N=V and a Fermi energy EF per particle given in the
formulae above. Thus P = NEF=V � nEF � n�hn1=3 = �hn4=3 for the relativistic case,
and � n�hn2=3 = �hn5=3 for the non-relativistic case. Since n / �, 
 = 4=3 for the
relativistic case and 
 = 5=3 for the non-relativistic case. The last is familiar since

PV 
 = constant or P = K�


with 
 = 5=3 is the adiabatic relation for an ideal monoatomic gas (having only
translational degrees of freedom). Thus, this relation holds for the thermal phase of
a star.

With the equation of state in hand, this di�erential equation can be solved
(although usually numerically).

The central pressure required to support a self-gravitating sphere of radius R
and mass M , where P / �5=3 is

Pc = 0:770
GM2

R4
;

and the corresponding central density is given by

�c = 5:99h�i = 1:43
M

R3
:

For a self-gravitating sphere with P / �4=3, hydrostatic equilibrium requires that

Pc = 11:0
GM2

R4
; and �c = 54:2h�i = 12:9

M

R3

A careful calculation of the degenerate electron gas pressure gives

Pe =
1

20

�
3

�

�2=3 h2n5=3e

me

= 0:0485
h2n5=3e

me

(non � relativistic)

=
1

4

�
3

8�

�1=3
hc n4=3e = 0:123 hc n4=3e (relativistic):
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To a very good approximation, a white dwarf is charge neutral so that the
number density of the electrons is equal to the sum over ion type i of the charge Zi

of the ion species, times the number density ni of the ith ion species:

ne =
X
i

Zni =
X
i

Zi

Ai

nb =
DZ
A

E
nb

Because electrons are so light

ne =
DZ
A

E �

mb

:

Show that

Pe = 0:0485
h2

me

�
Z

A

�5=3 �5=3

m
5=3
b

and that

R = 0:114
h2

Gmem
5=3
b

�
Z

A

�5=3
M�1=3

where Z=A is now the average over all ion species. Notice that the volume is inversely
proportional to the mass.

Compute R and �c for M = 0:5M� and M = 1:0M�. It is helpful to have the
non-relativistic (
 = 5=3) relations:

R

104 km
= 1:122 �

 
�c

106 g cm�3

!�1=6 �
A

2Z

��5=6

and

M

M�

= 0:4964

 
�c

106 g cm�3

!1=2 �
A

2Z

��5=2
= 0:7001

�
R

104 km

��3 � A

2Z

��5
:

For the relativistic electron gas the degenerate pressure is

Pe = 0:123 hc n4=3e :

It is easy to show that

Pe = 0:123
hc

m
4=3
b

�
Z

A

�4=3
�4=3:

Set the central pressure needed to that available from relativistic electron degeneracy.
Show that R cancels out of each equation and solve for M to get Chandrasekhar's
mass limit:

MCh = 0:2

�
Z

A

�2  hc

Gm2
b

!3=2

mb:

Again, the maximummass of a white dwarf is set by fundamental constants. Evaluate
this as you did in the Landau case for a star made of helium or hydrogen to �nd
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its maximum mass and radius. Once again, if you do not want to put in the
proton/neutron mass and G, h, and c, it will help to have the relations:

M

M�

= 1:4587

�
2Z

A

�2

and
R

104 km
= 3:347 �

 
�c

106 g cm�3

!�1=3 �
A

2Z

�2=3

Note again that the mass M is independent of �c and R in the extreme relativistic
limit.
Concluding Remarks: After Chandrasekhar's original work a number of corrections
were noticed. There is an electrostatic interaction between the electrons and ions
which give smaller radii and higher central densities; though, in general these
corrections are relatively small.

General Relativity induces a dynamical instability for white dwarfs when their
radii become smaller than 1:1� 103 km.

In thermonuclear reactions, the thermal energy of the reacting nuclei overcomes
the Coulomb repulsion between them so that nuclear reactions can proceed. A white
dwarf does not have su�cient mass and pressure to get past burning hydrogen to
helium. This is why it can eventually cool and become a degenerate electron gas
and begin its long slow collapse. If it reaches su�ciently high density, even at zero
temperature, the high density and zero point energy of the nuclei in a lattice can
lead to an appreciable rate of pycnonuclear nuclear reactions (\pyknos" is \dense"
in Greek). Hamada and Salpeter estimated that in 105 years hydrogen would be
converted to 4He via pycnonuclear reactions above a density of 5�104 g cm�3. Higher
densities can burn the helium to Carbon and at even higher densities the Carbon may
burn to Magnesium. These calculations of rate are highly uncertain, but it seems that
the maximum white dwarf radius is 3:90 � 10�2R� at M = 2:2 � 10�3M� for cold
carbon stars.

Following the discovery of the neutron and its beta decay to a proton and
electron

n! p + e� + ��e

it was realized that at very high densities electrons would react with protons to form
neutrons via inverse beta decay:

p + e� ! n + �e:

If all of a white dwarf's electrons and protons were converted to neutrons,
what would be the equation for the radius of the neutron star? Hint: Set Z=A = 1
in the original equations and replace the electron mass with a neutron mass. What
radius do you get for a M = 1:4M� neutron star?
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6 Neutron Stars

The �rst calculation of neutron star models was performed by UCB locals
Oppenheimer and Volko� (1939) who derived the relativistically correct hydrostatic
equation in a Schwarzschild metric. Here one has to use the metric for the interior
M(r) that was used in Problem 3. Then Einstein's equations give

dM(r)

dr
= 4��

(nothing new there),

dP

dr
= ��GM(r)

r2

 
1 +

P

�

! 
1 +

4�Pr3

GM(r)

! 
1� GM(r)

r

!

(note that when GM=r � 1 and P=� � 1, this reduces to the non-relativistic,
Newtonian case of the previous problem), and

d�

dr
= �1

�

dP

dr

 
1 +

P

�

!�1

These are the Oppenheimer-Volko� equations of hydrostatic equilibrium.
Low density neutron stars with the ideal neutron gas equation of state

(P = K�5=3) give

R

1 km
= 14:64

 
�c

1015 g cm�3

!�1=6

and
M

M�

= 1:102

 
�c

1015 g cm�3

!1=2

=

 
15:12 km

R

!3

:

Thus, in the Oppenheimer-Volko� calculation, there is no minimum neutron star
mass; in reality, neutrons become unstable to beta decay at su�ciently low density.
They also found a maximummass of 0:7M�. Calculate the radius and central density
for this neutron star. How does this 
 = 5=3 result compare with the relativistic limit
of R = 9:6 km and �c = 5� 1015 g cm�3?
Comment: The real equation of state for neutrons as they approach nuclear densities
is sti�er than the relativistic case, because repulsive nuclear forces become strong (as
they must if nuclei are to be stable). It is more like the non-relativistic equation of
state or sti�er. Thus, it is likely that neutron stars of 1.4M� are possible, and are
perhaps favored by nature.

7 Black Holes

To explore the Schwarschild geometry further, consider the motion of a freely moving
test particle. Such a particle must move on a geodesic in space-time. This means
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that

�AB =
Z B

A
d� =

Z B

A

q
g��dx�dx�

is an extremum. In the case of particles with mass it is a maximum. The Euler-
Lagrange equations that result from the calculus of variations give

d

d�

 
g��

dx�

d�

!
� 1

2
g��;�

dx�

d�

dx�

d�
= 0:

Using the simple relation from the metric,

dg��

d�
= g��;�

dx�

d�
;

this becomes
d2x�

d� 2
+
1

2
g�� (2g��;� � g��;�)

dx�

d�

dx�

d�
= 0

Since this looks so terrible, consider the connection to classical mechanics. The
Lagrangian L is

L =
1

2
m g��

dx�

d�

dx�

d�

=
1

2
m

" 
1� 2GM(r)

c2r

! 
dt

d�

!2

�
 
1 � 2GM(r)

c2r

!�1  
dr

d�

!2

� r2
 
d�

d�

!2

� r2sin2�

 
d�

d�

!2#
:

A particle will follow a path that makes the action A =
R Ld� , an extremum. The

Euler-Lagrange equations are:

d

d�

@L
@ _x�

� @L
@x�

= 0:

For �, �, and t these equations are, respectively:

d

d�
(r2 _�) = r2sin�cos� _�

d

d�
(r2sin2� _�) = 0

d

d�

"�
1� 2GM

c2r

�
_t

#
= 0:

Instead of using the r equation it is easier to use the fact that

g��u
�u� = 1 ! g��p

�p� = m2:
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Now, orient the coordinate system so that initially the particle is moving in the
equatorial plane (� = �=2; _� = 0). Then the particle will stay in the equatorial plane
and

p� � r2 _� = constant = l;

pt � (1 � 2GM

c2r
) _t = constant � E1;

where E1 is a constant of integration, and is identi�ed as the energy at in�nity.
It is related to the local energy E2

local = ptpt = g00ptpt by the redshift factor
(1� 2GM=c2r)�1=2. That is,

E1 =

�
1 � 2GM

c2r

�1=2
Elocal �

�
1 � GM

r

�
Elocal:

The �nal expression corresponds to the weak �eld limit.

Gravitational Redshift For an alternate derivation of the redshift formula, use
the fact that E1 is constant along the photon path to show that

�emitted

�received
=

(1 � 2GM=c2rreceived)
1=2

(1 � 2GM=c2remitted)
1=2

:

What is it approximately for an observer at a very large distance receiving the
photons? Explain why the Schwarzschild black hole radius (horizon) is sometimes
called the \surface of in�nite redshift"? How does this compare to the slowing of
clocks, dt=d�?

The physical interpretation of l is that it is the angular momentum:

l = Elocalrv
�;

and it is conserved because the potential is radial. Hereafter, let E denote E1. It is
convenient to consider the cases of massive and massless particles separately. For a
massive particle we can renormalize the energy E and the angular momentum l in to
quantities per unit mass.

E0 = E=m; l0 = l=m

so that we can �nd a simple equation of motion with the form of an e�ective potential.
Then using the relation m2 = g��p

�p� show that

 
dr

d�

!2

= E02 �
�
1� 2GM

c2r

� 
1 +

l02

r2

!
;

d�

d�
=

l

r2
; and

dt

d�
=

E0

1 � (2GM=c2r)
:
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Show that a local observer at r �nds that the velocity of a radially freely-falling
particle released from rest at in�nity is given by

vr =

�
2GM

r

�1=2
;

which has precisely the same form as the Newtonian velocity. For a Schwarzschild
mass equal to the Sun's, how long will it take to get to r = 0 from rs?

The equation for the velocity of r is simply the equation expressing
conservation of energy. Thus we can express the radial equation as

 
dr

d�

!2

= E02 � V (r)

where the e�ective potential is

V (r) =

�
1 � 2GM

c2r

� 
1 +

l02

r2

!
:

It is easy to show that this reduces to the Newtonian expression when 2GM=c2r << 1.
The potential will be at a maximum or minimumwhen @V=@r = 0. Show that

GMr2� l02r+3GMl02 = 0 for @V=@r = 0, and hence there are no maxima or minima
of V for l0 < 2

p
3GM .

Show that Vmax = 1 for l0 = 4GM . Circular orbits occur when @V=@r = 0 and
dr=d� = 0. Using the equations above gives

l02 =
GMr2

r � 3GM

E02 =
(r � 2GM)2

r(r � 3GM)
:

Thus, circular orbits exist down to r = 3GM=c2 = 1:5rs. The limiting case
corresponds to a photon (massless particle) orbit (E0 = E=m!1). Circular orbits
will be stable if V is concave up; that is, @2V=@r2 > 0 and unstable if @2V=@r2 < 0.
Why? Show that Schwarzschild orbits are stable if r > 3rs = 6GM=c2.

The fractional binding energy per unit mass of a particle in the last stable
orbit at r = 3rs = 6GM=c2 is easily found from the last equation for the energy per
unit mass:

E02 =
(r � rs)

2

r(r � 1:5rs)
= 8=9

E0
binding = 1� E0 = 1 � (8=9)1=2 = 5:72%:

This is the fraction of the rest-mass energy released when a particle, originally at rest
at in�nity, slowly spirals towards a black hole to the innermost stable orbit, and then
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plunges into the black hole. Thus, the conversion of the rest mass to other forms of
energy is potentially more e�cient for accretion onto a black hole than for nuclear
burning, which releases a maximum of only 0.9% of the rest mass for burning H to
Fe. This is the basis for invoking black holes as the energy source in many models
seeking to explain astronomical observations of the huge energy output from compact
regions (e.g. Cygnus X-1, AGNs, quasars, double-lobe radio galaxies).

To estimate accretion rates one needs to know the capture cross section for
particles falling in from in�nity. This is simply

�capture = �b2max

where bmax is the maximum impact parameter of a particle that is captured. We can
de�ne the impact parameter b as

b = lim
r!1

r sin�:

The �rst two Euler-Lagrange (or geodesic) equations of motion combine together in
the limit r!1 to give

1

r4

 
dr

d�

!2

�=
E02 � 1

l02
:

Substituting r �= b=� gives,
1

b2
=

E02 � 1

l02
;

or in terms of the velocity at in�nity, E0 = (1 � v21)
�1=2,

l0 = bv1(1� v1)
�1=2 ! bv1 for v1 << 1:

A non-relativistic particle moving towards the black hole (E0 �= 1; v1 << 1) is
captured if l0 < 4GM (as shown earlier in the problem). Thus the maximum capture
impact parameter is

bmax =
4GM

v1
;

which gives a capture cross section

�capture =
4�(2GM=c2)2

v21
=

4�r2s
v21

:

Compare this value with the geometrical capture cross section of a particle by a
gravitating sphere of radius R in Newtonian theory:

�Newtonian = �R2

 
1 +

2GM

v21R

!
:

Thus, a black hole captures nonrelativistic particles like a Newtonian sphere with
radius R = 8GM=c2 = 4rs.
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Now consider massless particles like photons. Since the mass is zero we cannot
use d� because it is zero also and zero over zero gives us an unde�ned answer. To
get the action one uses an arbitrary variable, e.g. s, to parameterize the trajectory
in 4-space. The equations of motion become

dt

ds
=

E

1 � 2GM=r

d�

ds
=

l

r2 
dr

ds

!2

= E2 � l2

r2

�
1� 2GM

r

�
:

By the Equivalence Principle, the particle's world line should be independent of its
energy. If we introduce a new parameter s0 = l s and b � l=E (this is equivalent to
dividing the mass out to get an e�ective potential), the equations of motion become

dt

ds0
=

1

b(1� 2GM=r)

d�

ds0
=

1

r2 
dr

ds0

!2

=
1

b2
� 1

r2

�
1 � 2GM

r

�
:

The worldlines depend only on the parameter b, which is the particle's impact
parameter, and not on E or l separately. Note that in the limitm!0 the two impact
parameters are the same and thus the quantity de�ned previously is consistent.

The photons can be understood in terms of an e�ective potential in the same
way the massive particles were earlier.

Vmassless = �
1

r2

�
1� 2GM

r

�

and  
dr

ds0

!2

=
1

b2
� Vmassless(r)

Show that V (r) has a maximum of [1=27(GM)2] at r = 3GM . Thus any
massless particle heading towards a black hole with b2 < 27(GM=c2)2 will be captured.
The capture cross section for massless particles, including photons, from in�nity is
thus

�massless = �b2c = 27�(GM=c2)2:

The Galaxy may have as many as 109 black holes with masses on the scale
of M� con�ned in a volume of about 1015 cubic light years. Light coming from the
center of the Galaxy must travel about 3 � 105 light years. What is its chance of
getting absorbed by a black hole on the way to us?
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8 The fate of a Man who falls in a Black Hole

Consider the plight of an experimental astrophysicist (or cosmic tourist) who stands
on the surface of a freely falling star as it collapses to R = 0. As the collapse proceeds
toward R = 0, the various parts of the astrophysicist's body experience di�erent
gravitational forces. His feet, which are on the surface of the star, are attracted
toward the star's center by an in�nitely mounting gravitational force. While his
head, which is farther away from he center, is accelerated downward by a somewhat
smaller, though ever rising force. The di�erence between the two accelerations (tidal
force) mounts higher and higher as the collapse proceeds, �nally becoming in�nite
as R reaches zero. The astrophysicist's body, which cannot withstand such extreme
forces, su�ers unlimited stretching between head and food as R drops to zero.

But this is not the only indignity. Simultaneous with the head-to-foot
stretching, the astrophysicist is pulled by the gravitational �eld into regions of
spacetime with ever-decreasing circumferential area 4�r2. Tidal gravitational forces
compress the astrophysicist on all sides simultaneously as they stretch him from
head to foot. The circumferential compression is actually more extreme than the
longitudinal stretching; so the astrophysicist, in the limit R ! 0, is crushed to zero
volume and inde�nitely extended length.

This discussion can be put on a mathematical footing as follows.
There are three stages in the deconstruction of the astrophysicist: (1) the early

stage, when his body successfully resists the tidal forces; (2) the intermediate stage of
gradual succumbing; and (3) the �nal stage where the particles in the astrophysicist's
body act independently and crush together.

During the early stage, the tidal forces are given by the geodesic equation
evaluated in the astrophysicist's orthonormal frame. In this frame the nonvanishing
components of the Riemann curvature tensor are:

R���� = �2GM=r3; R���� = R���� = GM=r3;

R���� = 2GM=r3; R���� = R���� = �GM=r3
(2)

The geodesic equation says that two freely moving particles, momentarily at rest in
the astrophysicist's local inertial frame and separated by the 3-vector

~� = �j~ej (3)

must accelerate apart with relative acceleration given by

D2�j=d� 2 = �Rj
�k��

k = �Rj�k��
k = �R�j�k�

k (4)

From the components of the curvature tensor, one has

D2��=d� 2 = +(2GM=R3)��

D2��=d� 2 = �(GM=R3)��

D2��=d� 2 = �(GM=R3)�� (5)
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To apply these equations to the astrophysicist's body, idealize it as a
homogeneous cylinder of mass � = 75 kg, length ` = 1:8 m in the ~e� direction,
and width and depth of 0.2 m (area A). Then calculate the stresses that must be set
up in this idealized body to prevent its particles from moving along diverging and
converging geodesics.

From the equations is tis evident that the principal directions of stress are
radial to the star (stretching) and radial to the cylindrical axis (compression). A
volume element of his body with mass d� located at a height h above the center of
mass would accelerate with a = (2GM=r3)h away from the center of mass, it it were
allowed to move freely. To prevent this acceleration, the astrophysicist's muscles and
connecting tissue must exert a force

dF = ad� = (2GM=r3)hd� (6)

This force contributes to the stress across the horizontal plane (� � �) through the
center of mass. The total force across that plane is the sum of forces on all the mass
elements above the center.

F =
Z
above plane

ad� =
Z H=2

0

2GMh

r3
�

`A
Adh =

1

4

GM�`

r3
� 4� 1019

M=M�

(r=1 km)3
dynes:

(7)
The stress is this force divided by the cross-sectional area A, with a minus sign since
it is a tension rather than a pressure.

T�� = �
1

4

GM�`

Ar3
� 1015

M=M�

(r=1 km)3
dynes=cm2 (8)

The components of stress in the � and � are

T�� = T�� = +
1

8

GM�`

`r3
� +0:7� 1013

M=M�

(r=1 km)3
dynes=cm2 (9)

Note that one atmosphere of pressure is 1:01 � 106 dynes/cm2. The human body
cannot withstand a tension or pressure of more than 100 atmospheres without
breaking. Consequently, and astrophysicist on a freely collapsing star of one solar
mass will be killed by tidal forces, when the star's radius is R � 200 km which is
much larger than the Schwarzschild radius of 3 km.

By the time the stars is smaller than its gravitational radius, the baryons of the
astrophysicist's body are moving along geodesics. His muscles and bones have given
away completely. In this �nal stage of collapse, the timelike geodesics are curves along
which the Schwarzschild \time"-coordinate, t, is almost constant. The astrophysicist's
feet touch the star's surface at one value of t, i.e. t = tf { while his head moves along
the curve t = th > tf . Consequently, the length of the astrophysicist's body increases
according to the formula

`astrophysicist = [g11(R)]
1=2(th�tf) = (2GM=c2R)1=2(th�tf) / R�1=2 / (�collapse�� )�1=3

(10)
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Here � = �
RR jgrrj1=2dr + constant is the proper time as it would be measured by

the astrophysicist, if he were still alive, and �collapse is the time at which he arrives
at r = 0. The gravitational �eld also constrains the baryons of the astrophysicist's
body to fall along world lines of constant � and � during the �nal stages of collapse.
His cross-sectional area decreases according to the law

Aastrophysicist = [g��(R)g��(R)]
1=2���� / R2 / (�collapse � � )�4=3 (11)

By combining these relations, one sees that the volume of the astrophysicist's body
decreases, during the last few moments of collapse, according to

Vastrophysicist = `astrophysicistAastrophysicist / R3=2 / (�collapse � � ) (12)

The crushing of matter to in�nite density by an in�nitely large gravitational forces
occurs not only on the surface of the collapsing star, but at any other point along
the r = 0 singularity outside the surface of the star. Hence any foolish tourist who
ventures below the Schwarzschild radius rs = 2GM=c2r is doomed to destruction.

9 Kerr-Newman Black Hole

9.1 \A Black Hole has no hair"

There is a nearly proved theorem that the external �eld of a black hole is determined
uniquely by the mass, charge, and angular momentum that went into the horizon.
The heart of this argument is a theorem by R. H. Price that states that if a physical
property of a slightly disturbed body is described by a �eld with spin s, then only
moments to one order lower, that is up to order s� 1, survive.

For example, electromagnetic information is carried by the photon which has
spin 1. Price's theorem therefore allows only electrical information of zero spin to
survive. The gravitational information is thought to be carried by the spin 2 graviton.
Hence the only surviving gravitational information is order zero and one. These bits
are carried by the mass (order zero) and the angular momentum (one).

Because classical physics depends only on gravity and electromagnetism, we
can argue that, so far as the known interactions of classical physics are concerned, the
most general black hole is characterized by its mass, charge and angular momentum.
This is a conjecture prompted by Price's theorem. so far a general proof that any
body, however, large its initial irregularities, will reach the same state has not been
given.

If this is the case, then when a mass M gets compacted into a region whose
circumference in every direction is <

�
4�GM=c2, the external gravitational �eld of a

horizon (black hole), after all the \dust" and gravitational waves have cleared away,
is almost certainly the Kerr-Newman generalization of the Schwarzschild geometry.
The Kerr-Newman geometry is

ds2 =
�

�2

h
cdt� asin2�d�

i2
� sin2�

�2

h
(r2 + a2)d� � acdt

i2
� �2

�
dr2 � �2d�2 (13)
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where

� � r2 � 2GMr=c2 + a2 +Q2

�2 � r2 + a2cos2�

a � S=M � angular momentum per unit mass (14)

The horizon of the Kerr-Newman black hole occurs at a radial coordinate given
by

R+ =
GM

c2
+

1

c2

q
G2M2 �GQ2 � a2 (15)

where a = cS=M . Notice that for R+ to be a real number, the quantity under the
square root must be positive; that is

G2M2 �GQ2 � a2 � 0: (16)

If this quantity is positive, there appears from the mathematics to be another horizon
at

R� =
GM

c2
� 1

c2

q
G2M2 �GQ2 � a2 (17)

However, since R� < R+, the external observer is concerned only with R+. IN the
particular case when the quantity under the square root is zero, R� = R+.

There is no horizon if the quantity under the square root is negative. Unlike
the Schwarzschild black hole, there is he intriguing possibility of the external observer
being in a position to witness the �nal state of gravitational collapse { the singularity.
The singularity is then called naked. Do black holes of this type exist? Or is there
a cosmic censorship that permits only those black holes to exist that have horizons
concealing the singular fate of the collapsing body from the external observer. This
is another open question.

10 Kerr Solution Black Hole

Since most actual black holes are likely to have a very low net electric charge a useful
astrophysical solution is the Kerr solution for a rotating black hole. The exact solution
of the nonlinear Einstein equations is:

ds2 = c2dt2 � �2

�
dr2 � �2d�2 � (r2 + a2)sin2�d�2 � 2GMr

�2

h
cdt� asin2�d�

i2
(18)

where

� � r2 � 2GMr=c2 + a2 +Q2 Q = 0
�2 � r2 + a2cos2�

a � S=M � angular momentum per unit mass (19)
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The limiting case of large r reduces to:

ds2 �=
�
1� 2GM

c2r

�
c2dt2�

�
1 +

2GM

c2r

�
dr2�r2(d�2+sin2�d�2)�2gMa2

r
sin4d�2+

4GMa

r
sin2�d�dt

(20)
or substituting in r2sin2d� = xdy � ydx one has

ds2 �=
�
1� 2GM

c2r

�
c2dt2�

�
1 +

2GM

c2r

�
dr2�r2(d�2+sin2�d�2)+ 4GMa

r2
(xdy�ydx)dt

(21)
The �rst four terms are exactly the same as in the Schwarzschild case and show that
M is the total mass of the system. The last term corresponds to the o�-diagonal
components in the metric that we saw for the frame dragging e�ect of a rotating
body so that S =Ma or a = S=M is the angular momentum per unit mass.

The Kerr geometry is much more complicated than the Schwarzschild
geometry, and depends drastically on whether GM > jaj or GM < jaj. One
complication of the Kerr geometry is the presence of an in�nite redshift surface when
g00 = 0. This corresponds to

g00 = 1 � 2GMr=�2 = 0 or r2 + a2cos2� � 2GMr = 0: (22)

The solution to this is

rinf� = GM �
q
(GM)2 � a2cos2� (23)

There are two distinct in�nite redshift surfaces. They do not correspond to any
physical singularity. The vanishing of g00 tells us that a particle cannot be at rest at
these surfaces; only light emitted in the radial direction can be at rest.

In the region between these two surfaces, the value of g00 is negative. Hence
t is not a time-like coordinate and the t independence of the metric does not
necessarily imply that the geometry is truly time independent. At radius r <

GM �
q
(GM)2 � a2cos2�, the coordinate t again reverts to the character of a time

coordinate.
In the Kerr geometry, the in�nite redshift surfaces do not coincide with the

event horizons.Where are the event horizons? Their locations are given by the
requirement that dr=dt = 0 for light (where ds2 = 0) independent of the value of
� and �. This corresponds to

rHorizon� = GM �
q
g2M2 � a2 (24)

At rHorizon� a light signal necessarily has zero velocity in the radial direction, the
light cones lie along the surfaces r = constant, and light cannot escape from these
surfaces.

Neither at the in�nite redshift surfaces nor at the horizons does the Kerr
geometry develop a local singularity; in freely falling geodesic coordinates, the
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curvature remains �nite. The only true singularity occurs at r = 0. Note that
in spheriodal coordinates, r = 0 is a disc centered on the origin. In rectangular
coordinates r = 0 corresponds to x2 + y2 = a2sin2�; z = 0:. Since � varies between
0 and �=2, this corresponds to x2 + y2 � a2. This is necessary for there to be a net
moment of inertia.

10.1 Can an External Body Gain Energy from a Rotating

Black Hole

Is there any way in which an external observer can determine the presence of a
rotating black hole? Suppose the observer comes closer and closer to the black hole,
while keeping an eye on the distant stars of the Universe. The distant stars provide a
background against which the rotation of the black hole can, in principle, be measured
via the frame dragging e�ect. Will the observer be able to arrange it so that the
distant stars do not appear to rotate? As the black hole is approached, the observer
will �nd an increasing tendency to get carried away in the same sense in which the
black hole is rotating. To keep stationary, he will need to apply a force against this
tendency, a force that increases as the black hole is approached. A stage known as
the static limit will come when he will be swept away by the black hole no matter
how hard he tries to counteract this rotational sweeping force. When this happens,
he has entered a zone called the ergosphere.

The ergosphere is not really spherical but has a shape that changes with
latitude l.

Rl =
GM

c2
+

1

c2

q
G2M2 �GQ2 � a2sin2l (25)

Why the name ergosphere? The nomenclature comes from the possibility that
a black hole may a�ord energy extraction in this region. (The Greek work ergo means
work.) Roger Penrose (1969) suggested that a projectile �red from outside into the
the ergosphere begins to rotate with the black hole so that the projectile acquires
more rotational energy than it originally possessed. The projectile can now break up
into two pieces. Of these, one may fall into the black hole singularity, whereas the
other may come out of the ergosphere. The piece coming out may then have more
energy than the original projectile.

In the Penrose mechanism, the black hole contributes part of its rotational
energy so that the black hole itself is slowed down, a process that can continue until
the black hole has given away all its rotational energy. The ergosphere will then no
longer exist. Starting from a Kerr black hole, one ends with a Schwarzschild black
hole. The schwarzschild black hole represents the �nally irreducible state in which
external processes can only increase the energy of the black hole instead of decreasing
it.
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10.2 Area of Black Hole

For a Schwarzschild black hole the area is simply

As = 4�R2
s =

16�G2M2

c4
(26)

For the Kerr-Newman black hole, the area is

A = 4�

 
R2
+ +

a2

c4

!
= 4�

"�
GM

c2
+

1

c2

q
G2M2 �GQ2 � a2

�2
+
a2

c4

#
(27)

Note that the more involved expression for area is an indication of the fact that the
non-Euclidean geometry of the Kerr-Newman black hole is much more complex than
that of the Schwarzschild black hole.

11 Free-Fall Times Question

Imagine that the thermal heat is removed from the Sun instantly and its constituents
behaved as non-interacting dust and would begin pressure-free collapse from the
present state. Calculate the time of a particle on the Sun's surface (R = 7 � 108 m)
to reach r = 0. Plot the radius as a function of time. Note how quickly the later part
of the collapse take. How would the time and curve look for a one solar mass White
Dwarf? Use RWD = 0:5 � 104 km = 5 � 106 m. How about for a one solar mass
neutron star? With RNS = 10 km. Do your calculation using the particle rest time
� so that simple Newtonian mechanics works.

12 Eddington-Finkelstein Coordinates

As a star collapses its surface will eventually reach and fall through the critical value
r = 2GM=c2 on the way to forming a black hole. As noted the Schwarzschild
coordinate singularity at r = 2GM=c2 is an impediment to understanding this
simple gravitational collapse. A new coordinate system that covers the r = 2GM=c2

surface regularly (without) singularity is desirable. One such set is the Eddington-
Finkelstein coordinates, which are particularly suited to exploring gravitational
collapse. Skipping over the mathematics of getting new coordinates note that the
new metric is

ds2 = (1 � 2GM=c2r)dv2 � 2dvdr � r2(d�2 + sin2�d�2) (28)

where v � ct+ r + (2GM=c2)ln (r=(2GM=c2)� 1) is a coordinate such that the past
light cones centered on the star are the surfaces v = constant. To see this, consider
a radial displacement v = constant; � = constant; � = constant. Because dv = 0,
d� = 0, and d� = 0, (dx�) = (0; dr; 0; 0); because there is no term in dr2 in the metric,
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the displacement is zero, i.e. it is a light ray. Note that on a plot of t versus r the
line v = constant is a 45� line toward r = 0

Consider radial light rays in the Eddington-Finkelstein metric. Deduce that
the displacements dv and dr along the light rays are related by

h
2dr �

�
1� (2GM=c2r)

�
dv
i
dv = 0 (29)

Hence show that the ingoing light rays are given by dv = 0 and the outgoing light rays
by dr = (1� (2GM=c2r)) dv=2; and so con�rm that the local light cones increasingly
tilt toward the v-axis (asymptotically close in on the 45� slant) as one moves in from
a large radius toward a small radius. In particular show that the future light cone
point 100% inward for r � rs = 2GM=c2. Make a sketch of a collapsing star surface
and resulting singularity in Eddington-Finkelstein coordinates (v vs. r). Include a
sequence in r of light cones for a time v when the dust has settled and the singularity
has come to equilibrium.
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Table 1: Laws of Black Hole Physics & Thermodynamics

Law Black Holes Thermodynamics

1st Energy & Momentum are conserved Energy is conserved

in every physical process. (Heat is form of energy.)

2nd In all physical processes involving BHs In any physical process the entropy

the total surface area of all the of all participating systems

participating BHs can never decrease taken together can never decrease

3rd By no �nite series of operations Cannot get to absolute zero

can one make the surface gravity

of a black hole zero

0th The surface gravity � is constant Thermal Equilibrium
over the event horizon A � B & B � C, implies A � C
of a stationary axially symmetric BH. Tend to thermal equilibrium

13 Laws of Black Hole Physics

13.1 Black Hole Threat/Link to Thermodynamics

The black hole absorbs everything but does not let anything leave! A black hole seems
like an ideal heat sink for running a Carnot engine. We can dump in heat energy
and get work! Imagine an advanced society that has built a complete Dyson sphere
around a black hole rather than a star.

Dyson speculated that a su�ciently technologically advanced society might
build a complete sphere around a star and use the star's radiated power to run the
machines of that advanced society. These would be di�cult to detect since they would
absorb the full star light and only reject waste heat.

Here we have gone one step further and assumed the advanced society has built
its sphere around a rotating black hole. They �rst extract rotational energy from
the black hole in the optimally e�cient manner which keeps the area of the black
hole constant by adding a little waste garbage and extracting angular momentum
energy. The e�ective Schwarschild radius increases by the added energy just enough
to compensate for the loss in surface area that would occur for the change in angular
momentum. This is a reversible phase since the surface area of the black hole is held
constant.
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Once the society has extracted all the angular momentum energy and
transformed the rotating black hole to a Schwarschild black hole with no more
angular momentum energy to extract. Then the energy extraction process must
be irreversible.

Suppose our advanced engineers �ll a box with the waste heat in the form of
thermal (blackbody) radiation and lower it down to the event horizon, slide open the
bottom and let out the radiation. Since the horizon is the surface of in�nite redshift,
the radiation has zero frequency and thus all the heat (thermal radiation) has been
turned into useful work. This argument works for all the garbage or any mass that
the advanced civilization wants to lower into the black hole but radiation is a good
example since this clearly violates the second law of thermodynamics as I am turning
all the heat into useful work, unless TBH = 0 K. In the last case, any civilization
that has access to a black hole can violate the second law at will and run a perpetual
motion machine. How do we get out of this conundrum?

One must take into account the size of the box used to transport the radiation.
To hold radiation of wavelength �, the box must be of size comparable to the
wavelength:

d � � � �hc

kT
(30)

Now when the bottom of the box is at the horizon, the mean radiation is d=2 above
the horizon and the energy left is Egd=2c2 where g = � = GM=R2

s = c4=4GM . Thus
the available work is

W = E

 
1� c2d

8GM

!
�= E

 
1� �hc3

8GMkT

!
�= E

�
T � TBH

T

�
(31)

Thus one has

TBH �=
�hc3

8GMk
�= 10�7K

�
M�

M

�
�= 1:2� 1026K

�
1 gm

M

�
(32)

This result from TBH was found by Bekenstein in 1973 & 4, who proposed not only
to associate this temperature to a black hole but also and entropy so that the laws of
thermodynamics could be applied to the whole process.
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The heat absorbed by a black hole equals the increase in mass of the black
hole, i.e. �Q = �Mc2 so that

�S =
�Q

TBH
=

�Mc2

TBH
=

8kGM�M

�hc
(33)

Alternately, this can be described in terms of a change in the surface area of the black
hole.

A = 4�r2s
�S = 8�rs�rs = 32�G2M�M=c4

S =
kc3

4��hG
A + constant (34)

(�Mc2 = TBH�S + 
�J)
The formation of a black of a black hole entails a very large increase in entropy.

We have this directly from the formula and we can understand this in an information
science point of view. When we put anything in a black hole the only information that
seems to be preserved is the total mass, angular momentum, and electric charge. Thus
vast amounts of information are destroyed increasing entropy greatly. The question of
what really happens to this information is a currently hot topic in black hole physics.

If a black hole has a temperature does it radiate? The surprising answer to
this that contrary to classical black hole physics, quantum mechanics says that this
is possible. This remarkable discovery was made by Steven Hawking in 1973. The
reasoning is as follows. Imagine the formation of a particle-antiparticle pair in a
strong �eld. I.e. like the electric �eld given at the beginning of this document. The
Uncertainty principle gives us the possibility of creating an electron-positron pair
and if they can be far enough apart, then the gain in energy in the electric �eld is
comparable or larger than the rest mass energy they can be made real. That will
happen for a su�ciently high electric �eld and it will also happen for a su�ciently
strong gravitational �eld.

But with gravity there is an extra �llip. At the horizon surface of a black hole,
by de�nition, a particle there has zero net energy. Its gravitational binding energy
just cancels its rest mass and kinetic energy. Therefore creating virtual particles as
the horizon is simple; however, they are trapped at the horizon and any perturbation
will send them back in. Thus one needs to have a positive net energy to make the
real. However, if one creates a pair of massless particle, such as photons, gravitons,
or neutrinos, then if one of the pair appears inside the horizon it will have negative
total energy and the one outside can have positive total energy. Since the particle is
massless it can then escape the black hole provided its momentum is in the outward
direction.

One can calculate this process carefully by simple quantum mechanics to �nd
that the barrier penetration factor for the pair is e�8�GME=�hc3 for E � �hc3=GM . The

ux of particles incident on the horizon is proportional to the number of quantum
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states: 4�p2dp=h3 which when multiplied by the barrier penetration factor for the
pair (one in one out) gives

outgoing 
ux of particles / 4�p2dp

h3
e�8�GME=�hc3

This is exactly the form of a thermal spectrum in the limited case of large energy
(E � kT ). The penetrating factor e�8�GME=�hc3 is the Boltzmann factor eE=kT , with
temperature:

T = TBH =
�hc3

8�GMk

If the energy is not large compared to kTBH the penetration factors is somewhat more
complicated, and depends on the wave nature and whether the particle is a fermion
or a boson. The result is still thermal distributions. But at low energy (frequency)
the Black Hole is actually a greybody. Not all the particles liberated at the horizon
escape to in�nity. Some of the particles are back scattered by gravitational potential
surrounding the black hole and are absorbed by the black hole. Thus the black
hole and its surrounding potential form a thermal radiator with less than perfect
emissivity; a gray body rather than blackbody.

The radiated power is the product of the black hole area times the Stephan-
Boltzmann constant and the black hole temperature to the fourth power. (We can
neglect the gray-body emissivity that occurs for low energies.)

Radiated Power = �SBT
4
BH 4�r2s

�= �1047(
1gm

M
)2erg s�1 �= �1026(

M

1gm
)�2gm s�1c2

The lifetime of a black hole will then be

� �=
M

dM=dt
' 10�26s� (M 1 gm)3

Approximately how long does it take for a 1 gm black hole to evaporate?
What Black hole mass evaporates in one second?
How long does it take for a solar mass (1033 gm) to evaporate?

What is the temperature of a Planck Mass, MP l =
q
�hc=G = 2:16 � 10�5 gm,

black hole?
Supposed that black holes were produced at the beginning of the universe.

What mass black hole would now, approximately 1010 years later be in the �nal stage
of evaporating?

What was its typical temperature? I.e. its temperature for most of its life.
Therefore what typical energy photons will it have been radiating? (k =

8:617 � 10�5 eV/K)
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