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1 Radiation From Accelerated Charge

1.1 Introduction

You have learned about radiation from an accelerated charge in your classical
electromagnetism course. We review this and treat it according to the prescriptions
of Special Relativity to �nd the relativistically correct treatment.

Radiation from a relativistic accelerated charge is important in:
(1) particle and accelerator physics { at very high energies (
 � 1) radiation losses,
e.g. synchrotron radiation, are a dominant factor in accelerator design and operation
and radiative processes are a signi�cant factor in particle interactions.
(2) astrophysics { the brightest sources from the greatest distances are usually
relativistically beamed.
(3) Condensed matter physics and biophysics use relativistically beamed radiation as
a signi�cant tool. An example we will consider is the Advanced Light Source (ALS)
at the Lawrence Berkeley Laboratory. Now free electron lasers are now a regular tool.

We will need to use relativistic transformations to determine the radiation and
power emitted by a particle moving at relativistic speeds.

Lets look at the concept of relativistic beaming to get an idea before we go
into the details which require a fair amount of mathematics.
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Radiation from an accelerated relativistic particle can be greatly enhanced.
Part of this e�ect is due to the aberration of angles and part due to the Doppler
e�ect.

1.2 Doppler E�ect

From time dilation we are used to the notion that a moving clock or system operating
at frequency �0 in its rest frame will appear to be slower to a reference system.

�t = 
�t0 (1)

so that if the period in the rest frame is �t0 = 1=�0, then

� = �0=
 (2)

The factor leads to the relativistic transverse Doppler shift. The frequency shift one
would observe for a clock or system moving transversely to the line of sight.

Thus the time between wave peaks (crests) or pulses is

�t = 
�t0 =



�0
(3)
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If the sources is moving at an angle � to the observer's line of sight, then the
di�erence in arrival times, �tA, of successive pulses or crests is

�tA = �t� d

c
= �t(1� v

c
cos�)

1

�obs
=




�0
(1� v

c
cos�obs) (4)

which when inverted or multiplied by c yields:

�obs =
�0


(1 � v
c
cos�obs)

�obs = 
�0(1� v

c
cos�) (5)

1.3 Radiation by an Accelerated Charge Near Rest

In 1897 Larmor derived the formula for the radiation by an accelerated charged
particle. He found for the power and angular distribution:

P =
2q2

3c3
~a � ~a dP

d

=

q2

4�c3
jaj2sin2� (6)

where � is the angle to the direction of acceleration. It is our task to �nd the
relativistically consistent and correct version of these formulae.

We can rederive the Larmor formula for your education. We consider the
electric �eld to be a real physical entity that points radially back to a charge at rest.
If we go into a moving frame, the electric �eld lines will continue to point radially
back to the instanteous position of the charge. The transformation of the electric �eld
works out precisely that way. The Lorentz-Fitzgerald contraction along the direction
of motion causes an increase by the factor 
 of the transverse component of the �eld.
Gauss's law continues to hold in that an integral over a closed surface, such as a
sphere, gives the net charge within.
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Now if a charge is diverted from uniform motion, then by our earlier arguments
about causality, the electric �eld lines out at radius R can not be e�ected by that
change from uniform motion until a time t = R=c later. (In fact we expect that the
electic �eld lines will change at the speed of light since light is an electromagnetic
phenomenon.) Thus at a time t after a brief �t = � disturbance (change from one
state of uniform motion to another - also called acceleration) there is a critical radius
R = ct. Inside of radius R � c� the electric �eld lines point radially to the new
instanteous position of the charge and outside of radius R+ c� the electric �eld lines
point radially to the virtual instanteous position of the undisturbed charge. The
virtual instanteous position is where the charge would have been had it not been
disturbed. There is a near discontinuity in the �eld lines where they must make a
jaunt nearly perpendicular to radial. Nearly means that the angle between the �eld
line and perpendicular to radial is of order c�=vt where v is the velocity change due
to the disturbance.

Consider: a charge moving with velocity v � c abruptly, at time t = 0, is
decelerated at a constant rate a until it comes to rest.

vo

t
0 �

v

J
J
J
J
J
JJ
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At t = 0, x = 0 and at t = � , x = vo�=2.
Now consider �elds at a time tf � � . At a distance r > ctf , the �eld will be

that of a uniformly moving charge, emanating from the \virtual present position" (the
point where the particle would have been, x = v0tf , if it had continued unaccelerated.
At a distance r < c(tf � � ), the �eld will be that of a charge at rest with x = vo�=2.

There is a transition region which is nearly a spherical shell (vo � c) A
particular �eld line L de�nes a cone of angle, �, inside, which contains a certain

ux. Its continuation L0 de�nes another cone which must contain the same 
ux by
reason of Gauss's law relating the �eld 
ux and the enclosed charge. Thus �0 = � and
L0 is parallel to L.

Consider the portion connecting these two regimes.
insert �gure

The radial component of the electric �eld, Er must be the same in the shell as
just outside of it on either side (Gauss's law).

Er =
q

r2
=

q

ctfr
=

q

(ctf )2
(7)
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By the geometry of the situation

E�

Er

=
votfsin�

c�
(8)

E� =
votfsin�

c�
Er =

votfsin�

c�

q

(ctf )2
=

qvosin�

c3tf�
: (9)

Now ctf = r, and a = vo=tf , so that

E� =
qasin�

c2r
(10)

The signi�cance of this result is that E� / 1=r while Er / 1=r2. At a large distance
the tangential electric �eld E� will dominate.

From our general knowledge of varying vacuum �elds we know that there will
be a component of ~B of strength equal to ~E and perpendicular both to ~E and ~r.

The energy density (energy per unit volume) in the transition layer is

u =
Energy

Volume
=

E2

�

8�
+
B�

8�
=

E2

�

4�
=

q2a2sin2�

4�c4r2
(11)

The volume of the shell is it area (4�r2) times its thickness (c� ) and the average of
sin2� = 2=3,

< sin2� > =
1

4�

Z
2�

0

Z
1

�1

sin2�d(cos�)d� =
1

2

Z
1

�1

sin2�d(cos�) =
1

2

Z
1

�1

(1� x2)dx

=
1

2
(x� 1

3
x3)j1

�1
=

2

3
(12)

so that the energy in the transition layer is

E =
2

3

q2a2�

c3
:

The radiated power is then the energy per unit time:

P =
2

3

q2a2

c3
: (13)

which is precisely the formula derived by Larmor in 1897.

1.4 Radiation from Circular Orbit

Suppose that ~a ? ~B, giving motion in a circle and that 
 � 1:
insert �gure: Reference frame S Laboratory and reference frame S0

which is the electron instantaneous rest frame

two column
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The laboratory reference frame S has ~B perpendicular to the plane of the
circular orbit (Bx = By = 0, and Bz = B and ~E = 0

F = ej~v � ~Bj = 
mov
2

r
(14)

By transformation law F 0 = 
�2;3F
column 2 Transform �elds:

E0 = 
 (E � �B) (15)

or more precisely

~E0 = 

�
~E � ~� � ~B

�
= 
 (0 + �xBz(�êy))
= ��
Bêy (16)

Thus
~F = (�e) ~E0 = +�
qBêy = mo~a (17)

Thus

a =
�
qB

mo

(18)

The power emitted is

P =
2

3

q2a2

c3
=

2

3

�2
2q4B2

m2
oc

3
(19)

This is the correct relativistic form! because P is energy per unit time and each is
the 0-component of a 4-vector!!

To make a relativistic generalization we employ the concept of covariance.
The Poynting vector is the 0-0 component of the electromagnetic stress tensor

and the radiated electromagnetic energy is the 0-component of a Lorentz 4-vector.
Time is the 0-component of a Lorentz 4-vector. So the ratio energy per time is an
invariant.

Can one �nd a Lorentz invariant that reduces to Larmor's formula as � ! 0?
If so, it will be the correct relativistic formula! Is it unique? Yes, if we require it to

involve only ~� and d~�=dt and not higher powers.
How is one to construct it? Non-relativistically,

dv

dt
=

1

mo

dp

dt
(20)

So the Larmor power is

P =
2

3

e2

m2
oc

3

 
d~p

dt
� d~p
dt

!
(21)
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To get an invariant, experience tells us to substitute d� for dt, i.e. d~p=dt ! d~p=d� ,
and add the fourth component:

d~p

d�
� d~p
d�

=

 
dE

d�

!2

� c2
 
d~p

d�

!2

(22)

Notice that
EdE = c2pdp (23)

So  
dE

c

!
2

=
(pc)2

E2
(dp)

2
=

�
mvc

mc2

�
(dp)

2
= �2 (dp)

2
: (24)

So that
1

c2
jd~p
d�
j2 = jd~p

d�
j2 � �2

 
dp

d�

!
2

(25)

Giving

P =
2

3

e2

m2
oc

3

2
4jd~p
d�
j2 � �2

 
dp

d�

!
2
3
5 (26)

It is possible to write this in many ways. One way is

P =
2

3

e2

c

6
�
j _~�j2 � j~� � _~�j2

�
(27)

1.5 Power and Angular Distribution Summary

We can calculate these in a consistent way by using these formula as correct in the
rest (primed) frame of the electron and transform the accelerations (forces), angles,
frequencies, etc. into the laboratory frame. What we need is to show that powe is
a Lorentz invariant P = P 0 for any emitter that emits with front-back symmetry
(zero net momentum) in its instantaneous rest frame. To do this we make use of the
invariance of ~a � ~u which is zero for all systems.

~a � ~u =
d~u

d�
� ~u =

1

2

d

d�
(u�u�) =

1

2

d

d�
(c2) = 0

This is a consequence invariance of the speed of light and four-vector velocity.
In the zero net radiation momentum (in instanteous rest frame) case ~a�~a = ~a�~a

since in the rest frame a0 = 0. Thus the power can be evaluated in any frame can be
found by computing the acceleration in that frame and squaring it.

P =
2q2

3c3
~a0 � ~a0 =

2q2

3c3

�
a02
?
+ a02

k

�

=
2q2

3c3

4
�
a2
?
+ 
2a2

k

�
(28)
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where a? is the acceleration perpendicular to the motion of the charged particle and
ak is the acceleration component parallel to the charge particle motion. In the last
line we have made use of the transformation of accelerations a0

k
= 
3ak and a

0

?
= 
2a?

evaluated in the instantaneous rest frame (primed) of the electron. Note that there
is a factor of 
 di�erence in the transformation of accelerations perpendicular and
parallel to the direction of motion. This translates into a di�erence between 
4 and

6 in the perpendicular and parallel cases.

We get a similar expression for the angular distribution:

dP

d

=

q2

4�c3

a2
?
+ 
2a2

k

(1 � �cos�)4
sin2�0 (29)

We are making use of the conversion

dP

d

=

1


4(1 � �cos�)4
dP 0

d
0

Evaluation for perpendicular and parallel cases yields:

dP?

d

=

q2a2
?

4�c3
1

(1� �cos�)4

"
1� sin2�cos2�


2(1� �cos�)2

#

!
�1 � 4q2a2
?

�c3

8

1� 2
2�2cos2� + 
4�4

(1 + 
2�2)6
(30)

dPk

d

=

q2a2
?

4�c3
sin2�

(1� �cos�)6
!
�1�

4q2a2
k

�c3
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2�2

(1 + 
2�2)6
(31)

Note the large powers of 
 8 and 10 which shows the seriousness of the
relativistic e�ects. Before we follow this up in detail, we review radiation near the
rest frame of the emitting particle.

1.5.1 Case I: acceleration parallel to motion

Consider ~� k _~�; acceleration parallel to motion ~� � _~� = 0. Recalling that
�2 = 1� 1=
2, then

� _� =
_



3
;

_� =
_


�
3
; _�2 =

_
2

�2
6

P =
2

3

e2

c

 
_


�

!
2

(32)

P =
2

3

e2

m2
oc

3

�
1� �2

� dp
d�

!
2
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=
2

3

e2

m2
oc

3

2

1


2

 
dp

dt

!2

d� =
dt




=
2

3

e2

m2
oc

3
(moc

2)2
"
d(�
)

dt

#
p = �
moc

=
2

3

e2

c

 
_


�

!
2

(33)

where the conversion makes use of the relations

(�
) =
q

2 � 1

d(�
)

dt
=

1

2

2
 _
p

2 � 1

=

 _


�

=

_


�
(34)

_


�
=

c

v

d

dt

�
E

moc2

�

=
1

moc

dE

vdt
=

1

moc

dE

dx
(35)

P

dE=dt
� 2

3

e2=moc
2

moc2
dE

dx
(36)

So that the power radiated compared to the energy change per unit distance is

P =
2

3

e2

m2
oc

3

 
dE

dx

!
2

(37)

Now we can compare the radiated power with the acceleration power

P

dE=dt
=

2

3

e2=moc
2

moc2
dE=dx

dE=dt

dE

dx
(38)

Note (dE=dx)=(dE=dt) � dt=(cdt) when � � 1. The ratio of powers, radiated to
acceleration, is negligible unless energy gain in 2:8 � 10�13 cm is of order of the rest
mass - i.e. for an electron� 0:511 MeV.

1.5.2 Case II: acceleration perpendicular to motion

Centripetal acceleration:
_~� ? ~�. ~a = c

_~� and ~v = c~�.
insert �gure / diagram to show vector directions

Then in the relation to �nd the rate of change of the energy-momentum four-
vector

1

c2

 
dE

dt

!
2

� jd~p
dt
j2
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E. =dt
�= 0; since ~F ? ~v, so that no work is being done on the particle. Then

P = �2

3

e2

moc3
jd~p
d�
j2 (39)

and

jd~p
d�
j = 
!j~pj (40)

where ! = �c=� is the orbital angular frequency of an orbit with radius �. One can
derive this relationship

dp

p
= d� =

ds

�
=

vdt

�
= !dt

dp

dt
= !p

Thus

! =
�c

�

Now we can move on to the power loss rate

d� =
dt



p = �
moc

P =
2

3

e2

m2
oc

3

2!2j~pj2

=
2

3

e2

m2
oc

3

 
�c

�

!

2 (�
mc)2 (41)

P =
2

3

e2c

�2
�4
4 (42)

The energy gain for a particle per turn in an accelerator is

�E = 2��
P

v
(43)

The radiation loss is

�E =
4�

3

e2

�
�3
4 (44)

In practical units

�E=(1 MeV) = 8:85 � 10�2
(E=1 GeV)4

�=(1 meter)
(45)

The power radiated by a bunch of electrons

Power=(1 watt) = 106[�E=(1 MeV turn)][J=(1 amp)] (46)
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provided the radiation is incoherent.
Aside: How to get these practical unit relations:

�E =
4�

3

e2

�
�3
4

Start by putting � = 1. If � is not very near to 1, then one gets negligible radiation
power.


 =
E

moc2
=

E(in GeV)

0:511 MeV

e2

�
=

e2

moc2
moc

2

�
= ro

moc
2

�
= (2:8� 10�13 cm)

0:511 MeV

� (in cm)

and the conversion from � in cm to m is �cm = 100�m. So that

�E =

"
4�

3

2:8� 10�13

100

0:511

(5:11 � 10�4)4

#
[E(in GeV)]4

� (in m)
MeV

=

"
8:85 � 10�2

[E(in GeV)]4

� (in m)

#
MeV

= 88:5
[E(in GeV)]4

� (in m)
keV (47)

Giving the conversion used above.

Power =
�E

Electron turn
� turn

sec
�Number of electrons

= �E
V

2��

2��J

eV
=

�E � J

e
Power (in kW) = 88:5[E(in GeV)]4J (in amps)=R (in m)

= 26:5[E(in GeV)]3B (in teslas)J (in amps)
�E (in MeV)

e
= �V (in MV) (48)

Now Some Numbers and History E.O. Lawrence invented the cyclotron
and the �rst was built here at Berkeley. Later his colleague Edwin McMillen (and
independently in the Soviet Union by V.I. Veksler) invented the idea of phase stability
which made the synchrotron possible.

Synchrotron radiation was �rst observed in a laboratory in 1947. That
laboratory was in Berkeley.

Early Synchrotrons:
First synchrotron was operated with 8 MeV electrons in 1946 by Goward and

Barnes in Woolwich Arsenal, UK. In 1947 GE labs operated an electron synchrotron
at 70 MeV. Soon after there were many operating.
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Table 1: Parameters for Sample Accelerators

Accelerator LBL Cornell LHC ALS FermiLab SSC Elo

Max. Energy (GeV) 0.3 10 45 1-2 1000 20,000 104

Particle e e e e p-p p-p p

B (Tesla) 0.33 0.135 1.248 4.4 6.6 7.7

Radius (m) 1 100 4249 1000 11.7 km 50 km

Bending R (m) 4.01 10.1 km

Beam Current (ma) 400 73 100

Single Bunch (ma) 1.6 0.00167

E-gain/turn (MeV) 0.05 10.5 350 1 5.26

E-loss/turn (MeV) 0.001 8.8 0.112 0.001 18

Synchrotron Power 45 kW 9.1 kW 1.8 MW
RF Power (kW) 16000 300 1600 61000

RF (MHz) 713.94 352 500 53.1 374.74 412
Harmonic 1800 31324 328 1113 103,680 146500
Beam lifetime (hrs) 14 4 �24 48
Fill time 30 min 2.1 min 40 min 4 hrs

An early synchrotron at Berkeley had a radius of about 1 meter and a
maximum energy of about 0.3 GeV. The synchrotron radiation �Emax � 1 keV/turn
could be noticed. The acceleration voltage was only a few keV/turn.

At big electron synchrotron was built at Cornell and operated at 10 GeV .
The radius was about 100 meters. It encloses a football �eld. The magnetic �eld was
B = 3.3 kG (0.33 Tesla). The accelerator voltage was about 10.5 MeV/turn and the
synchrotron losses were �Erad � 8:8 MeV/turn.

LBL Advanced Light Source is designed to provide synchrotron radiation as a
tool for research.

1.6 Synchrotron Radiation Basics

Consider the non-relativistic case of a charged particle in a circular orbit caused by a
magnetic �eld. That particle will radiate electromagnetic waves at a frequency given
by the orbit frequency (or the Lamor frequency)

!L =
qB

mc
�L =

qB

2�mc

due to the acceleration of bending in the magnetic �eld. As the particle's energy is
increased relativistic e�ects will become important. For the same orbit the particle
will both begin to radiate more energy and at more frequencies - which are at the
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orbit frequency and its harmonics. The peak power will be emitted at a frequency
which is at � 
3 times the orbit frequency. In the next sections we will understand
this.

1.6.1 Synchrotron Emitted Power

To �nd the total emitted power we can use the Lamor (1897) formula

Pemitted =
2

3

q2

c3
j~aoj2 = 2

3

q2

c3

4
�
a2
?
+ 
2a2

k

�
where ~ao is the particle acceleration in its instantaneous rest frame and the right hand
side of the equation uses the acceleration transform law from the particle rest frame.

dE

dt
= q~v � ~E

and since E = 0 we have 
 = constant.

~F =
d~P

dt
=

d

dt
(
mo~v) = q~v�~B

With 
 = constant,


mo

d~v

dt
= q~v� ~B

Thus
dvk

dt
= 0;

dv?

dt
=

q


mo

~v?�~B

We can conclude jvkj = constant and jv?j = constant. We have uniform circular
motion of the projected motion on the normal plane. That is a simple helical motion
around the uniform magnetic �eld.

The frequency of rotation or gyration is

!B =
qB


moc
; ! a? = !Bv?

Note that the gyration (orbit) frequency is the Lamor frequency divided by 
.
We can now evaluate the transformation of the Lamor formula for the power

radiated since we know a? = !Bv? and ak = 0

P =
2

3

q2

c3

4!2

Bv
2

?
=

2

3

q2

c3

4
 

qB


moc

!2

v2
?
=

2

3

q4B2

m2
oc

�2

?

2

=
2

3
r2oc�

2

?

2B2

= 2�2

?

2c�TUB = 2�2
2c�TUBsin

2�

where ro = e2=mec
2 is the classical radius of the electron, �T = 8�r2o=3 is the Thomson

crossection, UB = B2=8� is the energy density of the magnetic �eld, and � is the helix
pitch angle (angle of the gyrating particle with respect the magnetic �eld lines). This
is the relativistically correct form that we saw previously.
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1.6.2 Synchrotron Radiation Frequency Spectrum

First we consider the frequency distribution of a monoenergetic distribution, i.e. we
consider the radiation from a particle at an energy E corresponding to 
. When the
particle's energy increases (as 
 grows larger) the aberration of angles moves most of
the radiated power into a cone of half angle �� � 1=
 in the instantaneous direction
of motion of the particle. Thus an observer will see a pulse of radiation whenever the
particle's instantaneous velocity sweeps past his direction. This will happen once per
orbit. This pulse will be narrow both because the aberration of angles and because of
the time dilation and Doppler e�ect. Since the relativistic particle is moving towards
the receiver (observer), the received pulse is sharpened (compressed in time) by a
factor of order 
�2. The time compression goes at

dt

d�
= 1 � �cos� � 1� � +��2=2! 
�2

where the limit comes for 
 � 1 since � =
q
1 � 1=
2 ! 1 � 
�2=2 and ��2=2 �


�2=2.
Thus the observer will see a pulse every orbit with width 
�3 of the pulse

separation. Fourier theory tells us that the signal will appear at the orbit frequency
and its harmonics and that the power will peak at a frequency which is near 
3�L
(where �B = !L=2� = qB=mec).

For a magnetic �eld B = 10�5 Gauss, which is a typical value in the Galaxy
and many powerful radio galaxies, �L = 28 Hz. The electrons that produce emission
at radio frequencies of a few GHZ therefore have Lorentz factors 
 � 103 � 104. The
spacing between successive harmonics is �B = �L=
, for very high 
 this spacing is so
narrow as to negligible for all but the highest frequency resolution observations. In
astrophysical sources, this is often blurred and smoothed by variations in the electron
energy (a power law spectrum) and by variations in the magnetic �eld intensity and
direction.

1.7 Astrophysical Synchrotron Radiation

1.7.1 Historical Note

Although nonthermal radiation had been observed from the Galaxy from the opening
of radio astronomy in the pioneering work by Karl Jansky in 1933, there was no clear
evidence of its origin. In 1950 Kiepenheuer suggested that Galactic nonthermal radio
emission was synchrotron radiation and Alfv�en and Herlofson proposed that non-
thermal discrete sources were emitting synchrotron radiation. Kiepenheuer showed
that the intensity of the nonthermal Galactic radio emission can be understood as the
radiation from relativistic cosmic ray electrons that move in the general interstellar
magnetic �eld. He found that a �eld of 10�6 Gauss (10�10 Tesla) and relativistic
electrons of energy 109 eV would give about the observed intensity. The early 1950s
saw the development of these ideas (e.g. Ginzburg et al. 1951 and following papers,
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see Ginzburg 1969) that synchrotron emission was the source of non-thermal \cosmic"
radiation. This model was later supported by maps which showed that the sources of
the non-thermal components were extended nebulae and external galaxies and by the
discovery that the radiation was polarized as predicted by theory. The synchrotron
theory is widely accepted and is the basis of interpretation of all data relating to
nonthermal radio emission.

1.7.2 Context

Synchrotron radiation is a common phenonmen in astrophysics as there are almost
always plasma and magnetic �elds present and energetic electrons. Because of
stochastic scattering processes, the energetic electrons tend to be isotropically
distributed.

For an isotropic distribution of velocities one needs to average over all angles
for a given speed �. If � is the pitch angle, the angle between the magnetic �eld
direction and the particle velocity, then

< �2

?
>=

�

4�

Z
sin2�d


Thus

P =
�
2

3

�2
r2oc�

2
2B2 =
4

3
�T c�

2
2UB

where �T = 8�=3 r2o is the Thomson cross section and UB = B2=8� is the energy
density in magnetic �eld.

Electrons of a given energy (E = 
mec
2) radiate over a wide spectral band,

with the distribution peaking roughly at �c � 16:08(Be�=�G)(E=GeV)
2 MHz, with

a long low-power tail at higher frequencies, and most of the radiation in a 2:1 band
from peak. The peak intensity is at �max = 0:29�c = 4:6(Be�=�G)(E=GeV)

2 MHz.
The radiation from a single electron is elliptically polarized with the electric

vector maximum in the direction perpendicular to the projection of the magnetic
�eld on the plane of the sky. Explicitly the total emissivity of a single electron via
synchrotron radiation is the sum of parallel and perpendicular polarization

j(�) =

p
3e3Bsin�

16�2�0cme

F (x) (49)

where � is the electron direction pitch angle to the magnetic �eld B and F (x) �
x
R
1

x K5=2(�)d� is shown graphically in Figure ??.
The quantity x is the dimensionless frequency de�ned as x � !=!c = �=�c

where !c and �c are the critical synchrotron frequencies. An electron accelerated by
a magnetic �eld B will radiate. For nonrelativistic electrons the radiation is simple
and called cyclotron radiation and its emission frequency is simply the frequency of
gyration of the electron in the magnetic �eld.
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However, for extreme relativistic (
 � 1) electrons the frequency spectrum is
much more complex and extends to many times the gyration frequency. This is given
the name synchrotron radiation. The cyclotron (or gyration) frequency !B is

!B =
qB


mc
(50)

For the extreme relativistic case, aberration of angles cause the radiation from the
electron to be bunched and appear as a narrow pulse con�ned to a time period much
shorter than the gyration time. The net result is an emission spectrum characterized
by a critical frequency

!c � 3

2

2!Bsin� =

3
2qB

2mc
sin� (51)

To understand the astrophysical radiation, one must consider that cosmic ray
electrons are an ensemble of particles of di�erent pitch angles � and energies E. It
can generally be assumed that the directions are fairly isotropic so that integration
over pitch angles is straightforward.

The next step is integration over electron energy spectrum to determine the
total synchrotron radiation spectrum.

If the electrons' direction of motion is random with respect to the magnetic
�eld, and the electrons' energy spectrum can be approximated as a power law:
dN=dE = N0E

�p, then the luminosity is given by

I(�) =

p
3e3

8�mc2

�
3e

4�m3c5

�(p�1)=2
LN0B

(p+1)=2
e�

��(p�1)=2a(p); (52)

where a(p) is a weak function of the electron energy spectrum (see Longair, 1994, vol.
2, page 262 for a tabulation of a(p)), L is the length along the line of sight through
the emitting volume, B is the magnetic �eld strength, and � is the frequency.

At very low frequencies synchrotron self-absorption is very important as
according to the principle of detailed balance, to every emission process there is
a corresponding absorption process. At the lowest frequencies synchrotron self-
absorption predicts an intensity that increases as / �5=2.

The local energy spectrum of the electrons has been measured to be a power
law to good approximation, for the energy intervals describing the peak of radio
synchrotron emission (at GeV energies). The index of the power law appears to
increase from about 2.7 to 3.3 over this energy range (Webber 1983, Nishimura et
al 1991). Such an increase of the electron energy spectrum slope is expected, as the
energy loss mechanisms for electrons increases with the square of the electron energy.

The synchrotron emission at frequency � is dominated by cosmic ray electrons
of energy E � 3(�=GHz)1=2 GeV. The range of energies contributing to the radiation
intensity at a given frequency depends on the electron energy spectrum: the steeper
the electron distribution, the narrower the energy range (Longair 1994). For the case
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of most of the Galaxy, this range is of order 15 to 50. The observed steepening of the
electrons' spectrum at GeV energies is used to model the radio emission spectrum at
GHz frequencies (e.g. Banday & Wolfendale, 1990, Platania et al. 1998).
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1.8 Free electron Lasers

The Free Electron laser (FEL) is a classical device that converts the kinetic energy
of an electron beam into electromagnetic radiation by passing it through a transverse
periodic magnetic �eld (called the "wiggler"). In contrast with conventional lasers,
the radiation of the FEL is not constrained by the discrete energy levels that �x the
wavelength of emission. The wavelength of FEL radiation depends mainly on the
wavelength of the periodic magnetic �eld and the energy of the electron beam. High
peak powers and its large range of operational wavelengths make it a laser of the
future. A simple schematic representation of the FEL is given in the following �gure.

A key feature is that the FEL is a true laser producing coherent radiation.
Coherent radiation happens when the FEL is biased in the resonant condition. This
leads to an e�ect where the electrons bunch more tightly so that they radiate as
a single coherent bunch. For N electrons acting independently, the radiation is
proportional to Ne2. If the N electrons act coherently, as if a single particle, then
the radiation is proportional to N2e2.

One could seed the laser with an electromagnetic wave for speci�c applications
but to have a completely tunable laser, generally the FEL operates on the principle
of a single-pass free electron laser operating the self-ampli�ed spontaneous emission
(SASE) mode. Electron motion through the undulator with alternating magnetic
�elds forces the electrons into a sinusoidal trajectory leading to electromagnetic
radiation which recouples to the electron bunch causing laser action through SASE.
The radiated power increases along the electron beam path leading to exponential
increase in intensity. With high enough electron current and long enough undulator
the power is saturated and energy oscillates between the electron and photon beam.
If the resonant condition is met the energy exchange between the electron and photon
beam leads to microbunching and coherent emission.

It should be noted that the FEL does not require any mirrors or resonating
laser cavity structure. This is a great advantage at short wavelengths where, for
example, mirrors and optics are technicaly di�cult.

One can think about the FEL in steps: (1) What is the wavelength of light
emitted by an electron traveling down the FEL magnet structure? Once can �nd this
by using the synchrotron radiation formula or by transforming to the rest frame of
the electron to �nd the frequency of oscillation by the magnets and then transforming
the radiation to the lab by the Doppler formula. The approximate answer is

�
 =
�magnetic structure

2
2

(2) What is the resonant condition? The undulator gives a resonance condition
between the electron bunch and the electromagnetic wave, when one undulator
period (travel length) �u gives a time di�erence between the electron bunch and
electromagnetic wave corresponding to one period of the electromagnetic wave. In
that situation the electrons are always going uphill against the electric �eld and thus
adding power to the electromagnetic wave. That condition for very small transverse
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movement of the electrons is that

�t = �u=v � �u=c = �
=c = �u=(2

2c)

1.9 High Gain Free Electron Lasers

Motivation for high-gain FELs are as microwave sources for advanced accelerators
and e�cient sources of short wavelength radation. The basic physics is that a beam
of electrons is injected along the axis of an undulator (a transverse, periodic (�0),
magnetostatic �eld Bo(z), No periods). The electrons are periodically de
ected and as
a result radiate synchrotron radiation. The primary features of synchrotron radiation
are spontaneous emission which is incoherent: I � Ne, in a narrow cone: � � 1=
,
and narrow bandwidth:

dI

d!d

� sinc2

�
�N0

! � !s

!s

�
(53)

which peaks at ! = !s = 2�=�s (and we will see that the resonant condition is at
�s = (1 � �k)�o=�k.)

In the electron rest frame the wiggler �eld looks like N0 period radiation �eld
with wavelength

�0s = �0
0
= �0=
k

where 
2
k
= 1=(1��2

k
). Thus the electron oscillaesN0 times. It produces a wavepacket

of length N0�
0

0
peaked at wavelength �0

0
. The spectrum of the radiation is the Fourier

transform of a plane wave truncated after N0 oscillations:

I(!) = sinc2
�
�N0

�!

!s

�
(54)

In the laboratory frame, �s is the Doppler upshifted wavelength

�s =
�0s
2
k

' �0

2
2
k

(55)

The exact solution is

�s =
1� �k

�k
�0

A free electron laser has tunability via change in electron energy or the
undulator.

1


2
= 1� �2

k
� �2

?
' 1


2
k

� a2
0


2
(56)

where a0 is he dimensionaless vector potential of the undulator

a0 =
e�0B0

2�m0c2
helical
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= 0:934B0�0 per Tesla cm

=
e�0B0

2
p
2�m0c2

planar

= 0:66B0�0 per Tesla cm (57)

and


2
k
=


2

1 + a20
(58)

or

�s =
�0

2
2

�
1 + a2

0

�
(59)

1.9.1 Stimulated Emission

Inject a laser beam with � ' �s along the axis of the undulator. The electrons move
along curved path at ve<c. Therefore vk<c. Light moves down the4 axis at vz = c.
If an electron has the resonant energy ER = 
Rm0c

2


2R =
�0

2�

�
1 + a2

0

�
(60)

then the relative phase between transverse electron and radiation oscillations remains
constant. Depending upon the phase the electron can give energy to the �eld and
decellerate, _
<0 (stimulated emission) or take energy from the �eld and accelerate,
_
>0.

An issue is that at the entrance of the undulator the electron phases are
randomly distributed. For low gain, half of electrons will accelerate and half will
decellerate. For low gain < 
0 >> 
R. This is what is observed for the �rst FEL, the
Mdey laser in 1976 operated at 10.6 �m.

But if undulator is long enough and the current is high enough, then energy
modulation will result in space modulation. There will be \self-bunching" and it will
be around a \right" phase for gain. Most electrons will have the same phase and the
intensity will be proportional to the number of electrons squared. I / N2

e . This is
collective instability of self-bunching and exponential gain.

1.9.2 Self-Consistent Theory

To fully describe FELs, we need a many particle, self-consistent theory that combines
relativity for the electron mechanics and trajectories including the transverse current
J?, Maxwell's equations (or the special relativistic version), and an expression for the
radiation �eld.
Wiggler Field

~B0 = ~r� ~A0

Radiation Field

~E = �1

c

@

@t
~A ~B = ~r� ~A
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Trajectory Equation

dp

dt
=

d

dt
(
m0v) = e

�
~E +

1

c
~v � ( ~B0 + ~B)

�

Energy Equation
dE

dt
==

d

dt
(
m0c

2) = e ~E � ~v = eEv?

The total �eld on electrons from the vector potential ~Atot

~Atot = ~A0 + ~A

which is the total from the wiggler and radiation. ~A0 is periodic (spatially) either
planar or helical

~A0 =
1p
2
(êe�ik0z + c:c:)

for the helical �eld which leads to circularly polarized radiation:

~A = � ip
2

h
AêeI(kk�!t) � c:c:

i

where ! = ck = c
q
kk + k2

?
where k? allows for waveguides. Let k? = 0: Then

d

dt
(
m0v?) = e

�
E +

1

c
(v �B)?

�

= �e

c

"
@Atot

@t
� (v �r�Atot)?

#

= �e

c

d

dt
Atot (61)

d

dt
(
�?) = � e

mc2
dAtot

dt
dtatot (62)

For perfect on-axis injection �?(0) = 0 and

�? = �atot



' �a0
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